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ABSTRACT 

This paper describes a feasibility study into automatic 
recognition of Dutch dysarthric speech. Recognition 
experiments with speaker independent and speaker dependent 
models are compared, for tasks with different perplexities. The 
results show that speaker dependent speech recognition for 
dysarthric speakers is very well possible, even for higher 
perplexity tasks. 

1. INTRODUCTION 

Dysarthria is a speech disorder resulting from dysfunction of 
the nerves and muscles that control speech. The intelligibility 
of dysarthric speech is usually low, especially for unfamiliar 
listeners. Speech therapy can help improve intelligibility to 
some extent, but generally communication remains difficult. 

The quality of communication can be enhanced by using 
Automatic Speech Recognition (ASR) technology. ASR based 
communication aids are potentially faster and less tiring than 
other communication aids like e.g. pointing or scanning aids 
[15]. Furthermore, in case studies it has been observed that 
ASR systems can outperform human listeners, in the sense that 
the number of words recognised correctly by ASR systems is 
higher than that of human listeners [2, 12]. These potential 
advantages of ASR technology (i.e. faster, less tiring, and 
higher intelligibility) could explain, at least partially, why 
many disabled users prefer to use speech instead of other 
communication aids [5], and why many individuals with 
physical and speech disabilities are highly motivated to learn to 
use ASR technology [6, 8].  

There have been many studies on using ASR for dysarthric 
speech; an excellent overview is given in [9]. Most research 
has focused on using ASR as an (additional) channel of 
communication. However, there is another purpose for which 
ASR can be used by dysarthric speakers: pronunciation 
training. It has been observed that simply using ASR systems 
can improve the intelligibility of dysarthric speakers [1, 4, 11]. 
ASR can also be employed in systems developed specifically 
for pronunciation training, like the ones that already have been 
developed for language learning [7]. Likewise, it is possible to 
develop pronunciation training systems for dysarthric speakers, 
as is the aim of the STARDUST project [16].  

So far, in most studies off-the-shelf ASR systems have 
been used. For instance, many papers in the literature are about 
case studies in which standard, commercial ASR software is 
used (i.e. the ASR software packages for dictation and 
command-and-control that are widely available nowadays). 
However, off-the-shelf ASR systems are probably not optimal 
for recognising dysarthric speech because: 

(1) The pronunciation of dysarthric speakers often deviates 
from that of non-dysarthric speakers in several respects: rate of 
speech is lower, segments are pronounced differently, 
pronunciation is less consistent, and for longer stretches of 
speech pronunciation can be even more varying due to fatigue.  

(2) The lack of suitable training material. For Dutch no 
such material existed when we began our experiments. 

Although standard ASR systems are probably not optimally 
suited for recognising dysarthric speech, there are very few 
studies in which attempts have been made to develop ASR 
systems specifically for dysarthric speakers. This paper 
describes our attempt in a collaborative project between the 
Sint Maartenskliniek in Nijmegen [17] and the Dept. of 
Language & Speech. As the Sint Maartenskliniek has many 
dysarthric patients, the staff of this hospital is keen to know to 
what extent ASR can be used to their benefit. We did not have 
a specific application in mind. Instead, the goal of this pilot 
study was to conduct a feasibility study with an emphasis on 
the technical performance of ASR. The kind of questions we 
intended to answer were:  
• How well can dysarthric speech be recognised by a 

Continuous Speech Recogniser (CSR) trained on non-
dysarthric speech? 

• Will the recognition results improve if we train the CSR 
on (a limited amount of) speech of dysarthric speakers? 

• To what level of complexity are automatic recognition 
tasks of dysarthric speech feasible with current ASR 
technology? 

In order to answer these questions, we conducted a series of 
experiments for which we used read speech of two dysarthric 
speakers and two non-dysarthric (reference) speakers. 

The paper is structured as follows. In the next section, the 
speech material and the speech recogniser are described. In 
section 3, the experiments and the results are presented. A 
discussion can be found in section 4 and conclusions in 5. 



2. EXPERIMENTAL SETUP 

2.1. Speakers 

From two Dutch dysarthric speakers, who will be referred to as 
DYS1 and DYS2 in the remainder of this paper, a set of 
utterances was recorded. The speakers were men, known to the 
staff members of the department of rehabilitation medicine of 
the Sint Maartenskliniek, and selected mainly because they 
have a mild form of dysarthria that is non-progressive. Still, 
their speech is fairly unintelligible for unfamiliar listeners. The 
first speaker recently had a brainstem stroke, after which he 
received speech training. The second one has been a dysarthric 
speaker from birth, and received extensive speech training.  

As reference material, we also recorded the same set of 
utterances for two Dutch male speakers without a speaking 
disorder (the first and last authors of this paper). They will be 
referred to as REF1 and REF2. The total duration of the speech 
material (i.e. of the speech plus utterance internal silences) per 
speaker is given in Table 1. It can be seen that the speech rate 
for DYS2 is lower than that of the other three speakers.  

 
Table 1: Total duration of the speech material. 
 
DYS 1 DYS 2 REF 1 REF 2 
8.5 min. 12.8 min. 9.1 min. 7.9 min. 

2.2. Speech tasks 

All four speakers had to read the same list of items, consisting 
of four different tasks: 
1. NUM: the NUMbers '0' - '12', spoken in isolation 
2. PFU: from Polyphone, the 50 most Frequent Utterances  
3. PMS: 130 Plomp-Mimpen Sentences (which are 

semantically unpredictable sentences) [10] 
4. PRS: 10 Phonetically Rich Sentences 
The PRS and NUM items were read three times: near the 
beginning, middle, and end of the recording session. In Table 2 
the number of utterances and word tokens per task are given.  
 

Table 2: Number of utterances and words per task 
 

 NUM PFU PMS PRS 
# utt. 39 50 130 30 

# words 39 91 809 336 
 
All speech material was recorded on DAT tape. The speech 

was transferred to a computer and the contents of the utterances 
were checked and corrected if necessary. If speaker noises 
were present in the utterances, the appropriate symbols were 
added to the orthographic transcription. 

2.3. Polyphone material 

To investigate how well dysarthric speech can be recognised by 
a CSR trained on non-dysarthric speech, we used speech from 
the Dutch Polyphone database [3]. This is a 5000-speaker 
corpus with 40+ recorded items per speaker. Items similar to 
the items of the four tasks mentioned above were selected. In 
this way a total of 27,834 items was obtained: 4022 connected 
digit strings, 3702 items with the 50 most frequent (short) 
utterances and 20,110 phonetically rich sentences. The 

Polyphone corpus contains speech recorded over the telephone, 
whereas the speech recorded for the DYS and REF speakers is 
wide band. However, previous experiments have shown that 
the effect of this mismatch (for the CSR described in the next 
section, with filter banks between 350 and 3400 Hz) is 
relatively small, and we expect that the effect of this mismatch 
is much smaller than the effect of the mismatch in speech type 
(i.e. dysarthric vs. non-dysarthric).  

2.4. Speech recogniser 

For recognition a standard phone-based CSR was used [13], 
which has the following characteristics. Features are extracted 
every 10 ms using a 16 ms Hamming window. 14 cepstral 
coefficients and their derivatives are computed from Mel-
scaled filter banks between 350 and 3400 Hz. These features 
were used to train 3 state Hidden Markov Models (HMMs). 37 
context independent HMMs were used, corresponding to 36 
Dutch phones and 1 noise model. The CSR uses a language 
model consisting of a unigram and a bigram. 

Results of the recognition experiments are presented as 
Word Error Rates (WERs), i.e. the number of substitutions, 
insertions and deletions divided by the total number of words 
in the transcriptions. In interpreting the (differences in) WERs, 
one should keep in mind that the number of words for some 
tasks is small. For instance, for the NUM and PFU tasks one 
additional error results in an increase in the WER by 2.6% and 
1.1%, respectively.  

3. EXPERIMENTS 

3.1. Speaker independent models 

First we wanted to know how well dysarthric speech can be 
recognised with HMMs trained on non-dysarthric speech from 
a standard corpus. To this end speaker independent (SI) HMMs 
were trained on 27,834 items from the Dutch speech corpus 
Polyphone (see section 2.3). In order to make it easier to 
compare results between speakers, the lexicon and language 
model for each task were based on orthographic transcriptions 
of all four speakers together. Recognition tests were carried out 
for the four tasks described in section 2.2, separately for each 
of the four speakers. The WERs are shown in Table 3. As 
expected, the WER for the two reference speakers is much 
lower than the WER for the two dysarthric speakers. DYS2 has 
a higher WER than DYS1 in the short utterances. This is due to 
a lower speaking rate (cf. Table 1), which causes many 
insertions (e.g. often two digits are recognized instead of one). 
 

Table 3: WERs for speaker independent recognition 
 

 DYS1 DYS2 REF1 REF2 
NUM (SI) 15.4 41.0 0.0 0.0 
PFU (SI) 19.8 22.0 1.1 1.1 
PMS (SI) 30.3 15.2 2.1 1.7 
PRS (SI) 7.4 4.5 1.2 0.0 
 
A similar experiment was conducted in the ENABL project 

[14]. For each of 5 male and 5 female dysarthric speakers the 
same 10 utterances were recorded (with on average 7.5 words 
per utterance). A CSR was trained with non-dysarthric speech. 
The WER for dysarthric speech was 23% for one male speaker 



(with a word intelligibility of 100%), and varied from 67% to 
171% for the other 9 speakers. It is, however, difficult to 
compare the results in [14] to our own results, because details 
about the (the perplexity of) the tasks are not given in [14], and 
because we do not know how the severity of the dysarthria of 
their 10 subjects compares to that of our two subjects. 

3.2. Speaker dependent models 

Next, we wanted to test how much the performance of the CSR 
could be enhanced by using speaker dependent (SD) models. 
Given that the available amount of speech for the four subjects 
was small, we decided to use a jackknife procedure. For each 
speaker the utterances were randomly split up in five (almost) 
equal parts. Five recognition experiments were carried out. In 
each recognition experiment 1/5 of the data was used for test, 
and the remaining 4/5 was used to train the HMMs. The 
HMMs were trained on 4/5 of the data of all tasks together. 
Reported test results are the average of the results of the five 
individual tests (thus based on the whole set of utterances). 

Training was done in the following way. The SI HMMs (cf. 
section 3.1) were employed to obtain an initial segmentation of 
the training speech. Starting from this segmentation, HMMs 
with increasing complexity were trained: first 1 Gaussian per 
state, by each split the maximum number of Gaussians was 
doubled until after 6 splits the maximum number of Gaussians 
per state was 64 (=26). Recognition experiments were carried 
out for all these sets of HMMs to find the optimum HMM 
resolution for the small amount of training data.  

Testing was done for the four tasks separately. The lexicon 
and language model were the same as those used in the SI 
experiments. For brevity, we first present in Table 4 the WERs 
computed over the whole test set for the model sets with 
increasing number of splits (e.g. SD3 means 3 split SD 
models).  

 
Table 4: WERs for the jackknife experiments for all tasks 

together per model set (rows) and per speaker 
 

 DYS1 DYS2 REF1 REF2 
ALL (SD0) 14.3 7.5 3.4 3.6 
ALL (SD1) 12.0 4.1 2.2 2.4 
ALL (SD2) 9.5 2.9 1.8 2.8 
ALL (SD3) 9.7 2.4 2.6 3.0 
ALL (SD4) 10.3 3.0 3.5 3.3 
ALL (SD5) 11.7 3.8 4.0 3.9 
ALL (SD6) 15.1 5.3 4.2 4.4 

 
In Table 4 we can see that the WERs (going from top to 

bottom) first decrease and then increase again. In previous 
experiments, in which a large amount of training material was 
available, the optimum was usually found for 6 or 7 split 
models [13]. Given the small amount of (training) material, it 
comes as no surprise that the high-resolution models perform 
less well than HMMs with a lower resolution; the high-
resolution models are probably undertrained. On average, the 
best results were obtained for 2 or 3 split models (4 or 8 
Gaussians per state). Below we will only present the results of 
the 2 split models (SD2), because they perform best on 
average, and all important tendencies can be seen in the results 
of the 2 split models. 

Table 5: WERs per task for the jackknife experiments 
 

 DYS1 DYS2 REF1 REF2 
NUM (SD2) 2.6 0.0 0.0 0.0 
PFU (SD2) 9.9 5.5 1.1 2.2 
PMS (SD2) 12.2 3.3 2.2 3.6 
PRS (SD2) 3.6 1.5 1.2 1.2 
 
In Table 5 the results of the jackknife experiments are 

given per task. When compared to Table 3, it can be observed 
that for the dysarthric speakers the WERs with SD HMMs are 
much better than the WERs with the SI HMMs. Relative 
improvements in WER vary from 50% to 100%. For the 
reference speakers some of the WERs are slightly higher. This 
is probably because the positive effect of speaker dependent 
training material is counterbalanced by the negative effect of 
less training material. The two reference speakers are 
recognised roughly equally well, while the values for DYS2 are 
clearly better than those for DYS1. In fact, for three of the four 
tasks the WERs for DYS2 are similar to those of the two 
reference speakers.  

3.3. No language model and a large lexicon 

The main aim of the current pilot project was to study to what 
extent speech recognition of dysarthric speech is possible. 
Given the high WERs mentioned in [14], and the fact that 
dysarthric speech deviates a lot from non-dysarthric speech, we 
decided to start with the four low perplexity tasks mentioned 
above (with a small lexicon and a highly constrained language 
model). The test-set perplexities of these four tasks are shown 
in Table 6.  
 

Table 6: Test set perplexity for the different tasks 
 

NUM PFU PMS PRS 
13 15 8 2 

 
Given the encouraging recognition results presented above, 

we decided to study what the recognition results were for tasks 
with higher perplexity. The perplexity was gradually increased 
by extending the size of the lexicon and the amount of training 
material for the LM, and recognition results were evaluated. 
Here we present the results of the experiments in which for 
each task no language model and a large lexicon consisting of 
all the 516 words of the four tasks was used. The results are 
shown in Table 7. 

 
Table 7: WERs for the experiments without a language 

model and with a large lexicon 
 

 DYS1 DYS2 REF1 REF2 
NUM (SI) 64.1 100 12.8 18.0 

NUM (SD2) 28.2 20.5 0.0 10.3 
PFU (SI) 89.0 84.6 37.4 33.0 

PFU (SD2) 50.6 20.1 18.7 24.2 
PMS (SI) 87.2 81.6 51.2 60.8 

PMS (SD2) 63.8 36.5 40.4 37.3 
PRS (SI) 86.4 77.4 57.1 64.9 

PRS (SD2) 52.2 33.0 45.5 41.4 
 



As expected, recognition performance drops drastically. In 
all cases, the results for the SD2 HMMs are better than those 
for the SI HMMs. The results for DYS2 for the SD2 HMMs are 
remarkable: for the tasks PMS and PRS the WERs for DYS2 
are lower than those of the reference speakers, for the PFU task 
they are about equal, while for the NUM task the WERs for 
DYS2 are higher than those of the reference speakers and are 
more similar to those of DYS1. 

4. DISCUSSION 

The differences between the results for DYS1 and DYS2 are 
interesting. For speaker independent models, the WERs for the 
dysarthric speakers are much higher than those of the reference 
speakers. However, if we compare the WERs for the speaker 
dependent models we notice that for DYS2 they are much 
lower than for DYS1 and are similar to those for the reference 
speakers. 

Most likely this is due to the fact that the speech rate of 
DYS2 is lower than that of the other three speakers, and thus 
the amount of inter-word coarticulation wil l probably be less 
for DYS2. This is reflected in the WERs in Table 7: for DYS2 
the relative differences in WERS between the tasks (isolated 
numbers and utterances of different lengths) is smaller than the 
relative differences for the other three speakers. 

In the near future we intend to explore whether the 
performance of the CSR can be enhanced by, e.g., speaker 
adaptation, lexicon adaptation, and tuning the internal 
parameters of the CSR.  

5. CONCLUSIONS 

In our experiments we find WERs ranging from 4.5% tot 
41.0% for dysarthric speech that is recognised with HMMs 
trained on non-dysarthric speech. Large relative improvements 
of 50% to 100% in these WERs were found when the HMMs 
were trained on a limited amount of speaker specific material. 
The resulting WERs show that ASR of dysarthric speech is 
certainly possible for these low-perplexity tasks. For the high-
perplexity tasks (in which no language model was used) the 
WERs for DYS2, who had a lower speech rate than the other 
speakers, were on average similar to the WERs of the reference 
speakers. These results are encouraging, and indicate that also 
for higher perplexity tasks ASR of dysarthric speech is within 
reach, especially when the user speaks at a relatively slow 
pace. 
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