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Abstract

Computer Assisted Language Learning (CALL) applications for im-
proving the oral skills of low-proficient learners have to cope with non-
native speech that is particularly challenging. Since unconstrained non-
native ASR is still problematic, a possible solution is to elicit constrained
responses from the learners. In this paper we describe experiments aimed
at selecting utterances from lists of responses. The first experiment on ut-
terance selection indicates that the decoding process can be improved by
optimizing the language model and the acoustic models, thus reducing the
utterance error rate from 29-26% to 10-8%. Since giving feedback on incor-
rectly recognized utterances is confusing, we verify the correctness of the
utterance before providing feedback. The results of the second experiment
on utterance verification indicate that combining duration related features
with a likelihood ratio (LR) yields an equal error rate (EER) of 10.3%, which
is significantly better than the EER for the other measures in isolation.

1 Introduction

The increasing demand for innovative applications that support language
learning has led to a growing interest in Computer Assisted Language Learn-
ing (CALL) systems that make use of ASR technology. Such systems can ad-
dress oral proficiency, one of the most problematic skills in terms of time in-
vestments and costs, and are seriously being considered as a viable alternative
to teacher-fronted lessons. However, developing ASR-based CALL systems
that can provide training and feedback for second language (L2) speaking is
not trivial.

First of all, because non-native speech is atypical in many respects and,
as such, it poses serious problems to ASR systems [1] [2] [3] [4]. Non-native
speech may deviate from native speech with respect to pronunciation, mor-
phology, syntax and the lexicon. Pronunciation is considered a difficult skill to
learn in a second language (L2), and even highly proficient non-native speak-
ers often maintain a foreign accent [5]. An important limiting factor in acquir-
ing the pronunciation of an L2 is considered to be interference from the first
language (L1). As a consequence, the pronunciation of non-native speakers
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may deviate in various respects and to different degrees from that of native
speakers. Deviations may concern prosodic or segmental aspects of speech or
both. At the segmental level the deviations may be limited to phonetic prop-
erties without really compromising phonemic distinctions, or they may blur
phonemic distinctions and thus have more serious consequences for intelli-
gibility. For instance, non-native speakers may use phonemes from their L1
when speaking the target language [5] or they may have difficulties in perceiv-
ing and/or realizing phonetic contrasts that are not distinctive in their mother
tongue. Illustrations of this phenomenon are provided by Italian speakers of
English who realize English /p/, /t/, /k/, /b/, /d/, and /g/ with voice on-
set time (VOT) values that differ from those employed by native speakers [5].
Such deviations might cause misunderstandings in certain cases, but do not
necessarily hamper communication because the distinction between separate
phonemes, i.e /p/ vs /b/ in the target language is preserved, albeit differently
realized. Native speakers will probably perceive the difference and consider it
as foreign accent. More problematic deviations may arise when the difficulty
in perceiving and realizing phonetic features of the target language that are not
distinctive in the mother tongue leads non-native speakers to blur the distinc-
tion between phonemes in the target language, thus producing one phoneme
instead of two distinct ones. This is the case with many non-native speakers
of English, for instance Germans [6], who have difficulty in realizing the dis-
tinction between the English phonemes /ae/ and /e/ and often produce /e/
when /ae/ should be used, or Japanese speakers of English who have diffi-
culty in distinguishing /l/ and /r/ [7] and may end up producing sounds that
are neither an English /l/ nor an English /r/. In such cases confusion may
arise because distinct words will be realized in the same way. This can also
happen when speech sounds are inappropriately deleted or inserted, which is
another common phenomenon in non-native speech [8].

With respect to morphology and syntax the speech of non-natives may also
exhibit deviations from that of native speakers. [9]. At the level of morphol-
ogy they may find it difficult to produce correct forms of verbs, nouns, ad-
jectives, articles etc, especially when the morphological distinction hinges on
subtle phonetic distinctions, such as the presence of a plosive or fricative sound
in consonant clusters or the distinction between two similar vowels (this vs
these). Irregular verbs and nouns may also pose serious problems, resulting
in the production of non-existent regularized forms. Deviations in syntax may
concern the structure of sentences, the ordering of constituents and their omis-
sion or insertion. As to vocabulary, non-native speakers also tend to have a
limited and often deviant lexicon. Finally, non-native speech exhibits more dis-
fluencies and hesitation phenomena than native speech and is characterized by
a lower speech rate [10] [11] [12] [13][14].

All these problems are compounded when dealing with speech of non-
natives that are still in the process of learning the language. In general, the
degree of deviation from native speech and the incidence of disfluencies will
be in inverse relation to the degree of proficiency in the target language. Con-
sidering that ASR-based CALL systems are intended for L2 learners, includ-
ing beginner and intermediate learners, it follows that the type of non-native
speech that has to be handled in this context is, in general, even more atypical
and therefore more challenging, than the non-native speech that is usually en-
countered in other ASR applications that do not have such a teaching function,
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like information systems or access interfaces.
To circumvent the ASR problems caused by non-native speech, various

techniques have been proposed to restrict the search space and make the task
easier. A major distinction can be drawn between strategies that are essentially
aimed at constraining the output of the learner so that the speech becomes
more predictable and techniques that are aimed at improving the decoding of
non-native speech. Such strategies are often used in combination.

Within the first category, a possible strategy consists in eliciting constrained
output from learners by letting them read aloud an utterance from a limited
set of answers presented on the screen or by allowing a limited amount of
freedom in formulating responses, as in the Subarashii [15] and the Let’s Go
systems [16]. More freedom in user responses is particularly necessary in ASR-
based CALL systems that are intended for practicing grammar in speaking
proficiency. While for practicing pronunciation it may suffice to read sentences
aloud, to practice grammar learners need to have some freedom in formulat-
ing answers in order to show whether they are able to produce correct forms.
Less constrained output is not only problematic because it is more difficult to
predict, but also because, in general, it is accompanied by a higher incidence of
disfluencies and hesitations. In a study on read and spontaneous speech pro-
duced by non-native speakers of Dutch [12], we found that extemporaneous
speech contains many more filled pauses and disfluencies than read speech.
The more freedom is allowed to the learner, the more complex the recognition
task will be. In addition, tasks with more freedom will in general be char-
acterized by a higher cognitive load, which, in turn, is likely to lead to more
disfluencies being produced [17], thus making the recognition task even more
difficult.

The second category of techniques for dealing with non-native speech, i.e.
those that are aimed at improving decoding, comprises methods for optimizing
the acoustic models, the lexicon and the language model in order to compen-
sate for the deviations in pronunciation, morphology and syntax.

All the factors mentioned above make it clear that to develop ASR-based
CALL systems for oral proficiency it is necessary to take measures at different
levels. A first important measure consists in designing exercises that allow
some freedom to the learners in producing answers, but that are predictable
enough to be handled by ASR. How much freedom can be allowed is of course
dependent on the quality of decoding.

These are exactly the problems we face in the DISCO project, which is aimed
at developing a prototype of an ASR-based CALL application for practicing
oral skills in Dutch as a second language (DL2) and providing intelligent feed-
back on important aspects of speaking performance such as pronunciation,
morphology, and syntax. The application should be able to detect and give
feedback on errors that are made by learners of DL2 at the A2 level of the Com-
mon European Framework (CEF). This is achieved by generating a predefined
list of possible (correct and incorrect) responses for each exercise.

In this project we intend to use a two-step procedure in which first the con-
tent of the utterance is determined (what was said), and subsequently the form
of the utterance is analysed (how it was said). In the first (recognition) step the
system should tolerate deviations in the way utterances are spoken, while in
the second (error detection) step, strictness is required (see also [18] and [19]).
In the first step of the two-step procedure two phases can be distinguished,
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a) utterance selection and b) utterance verification (UV). When learners are
allowed some freedom in formulating their responses, there is always the pos-
sibility that the learners response is not present in the predefined list and is
recognized incorrectly in phase (a) as one of the utterances of the predefined
list. And even if the utterance is present in the list, it can also be recognized in-
correctly. Giving feedback on the basis of an incorrectly recognized utterance is
confusing and thus should be avoided. Therefore, utterance verification (UV)
is carried out in phase (b).

In this paper we present two experiments we carried out in order to test
both utterance selection and utterance verification for our system using state-
of-the-art techniques. In the utterance selection phase one of the utterances
from the predefined list is selected, and in the utterance verification phase it is
determined whether this utterance should be passed on to the following stages
of the CALL system (error detection, feedback, etc.). While in the final sys-
tem both phases should work in tandem, we studied (optimized, evaluated,
etc.) the two phases in isolation, for diagnostic purposes, to acquire a better
understanding, and thus, finally, to obtain a better functioning system.

In Section 2 we discuss related work on non-native speech recognition and
utterance verification. In Section 3 we introduce our system architecture and
relate the choices for the experimental settings to previous work. In Section 4
and 5 we present two experiments that are aimed at optimizing and evaluating
utterance selection and utterance verification using realistic test material. In
Section 6 we discuss the results of the two experiments in combination and
consider the implications for our CALL application.

2 Related work

In automatic speech recognition (ASR) the recognition result is often obtained
using the maximum a posteriori (MAP) decision rule decoder:

ŵ = arg max
w∈W

p(w|x) (1)

where p(w|x) is the posterior probability of a word sequence w in a set of word
sequences W given a sequence of acoustic observations x and ŵ is the recogni-
tion result that maximizes the posterior probability.

By using Bayes rule Eq. 1 can be reformulated as Eq. 2, and given that x is
the same for all word sequences in W, it can be rewritten as Eq. 3:

ŵ = arg max
w∈W

p(x|w)p(w)
p(x)

(2)

= arg max
w∈W

p(x|w)p(w) (3)

By implementing Eq. 3 we can still find the optimal sequence of words ŵ in
W. However, it is generally not only important to find the best sequence of
words ŵ relative to the others sequences (Eq. 3), but also quantitatively as-
sess the confidence in the recognition result in an absolute sense. This number
is called the confidence measure (CM) of the recognition result and the prob-
lem of accepting or rejecting a recognition result is called utterance verification
(UV).
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Both (non-native) speech decoding and utterance verification are the key
aspects of this research. We will now relate our research on both problems to
other recent work.

2.1 Non-native speech decoding

In the ASR community, it has long been known that the differences between
native and non-native speech are so pervasive as to degrade ASR performance
considerably (e.g. [20] [21] [1]). These differences affect essentially all three
components of an ASR system. As explained in Section 1, non-natives often use
different words and word orders (language model), produce sounds differently
(acoustic models), pronounce words differently (lexicon) (see, for instance [2]),
and generally have a lower speech rate and produce more disfluencies ([10]
[11] [12]). A short overview of research on the three components of the ASR is
provided in this section.

In attempts aimed at improving ASR performance on non-native speech,
the acoustic models have received most attention. Various kinds of acoustic
models can and have been used. First of all, it is possible to train acoustic
models on speech material of the target language (L2). However, the recogni-
tion performance obtained with such models is usually not sufficient or at any
rate considerably lower than the performance on native speech, because of the
various deviations in the speech of non-natives [20] [21]. Models can also be
obtained by training exclusively on non-native (L2) speech [22] [23], or on com-
binations of L1 and L2 speech. Regarding the latter, two different approaches
can be adopted: ”model merging” and ”parallel models”. In the ”parallel mod-
els” approach, acoustic models for both languages are stored, and during de-
coding the recognizer determines which models fit the data better [24] [25]
[26] [27]. In the ”model merging” (or model interpolation) approach, acoustic
models of both languages are combined, in order to obtain a new set of acous-
tic models [26]. The obvious disadvantage of these L1-L2 approaches is that
they can only be applied to fixed L1-L2 pairs. An alternative approach that can
be applied consists in employing adaptation techniques, such as the common
Maximum Likelihood Linear Regression (MLLR) and MAP techniques, which
have shown to improve recognition performance [20] [23] [21] [28] [26]

Improving ASR performance on non-native speech can also be carried out
at the level of the lexicon. An obvious way to model pronunciation variation at
the level of the lexicon is by adding pronunciation variants to the lexicon [29]
[30]. In the case of non-native speech these variants should reflect possible L1-
induced mispronunciations of words L2 learners may produce [31] [32] [18].
These variants can be generated by means of rules obtained from studying
non-native speech [32] [18]. Another possibility to generate non-native vari-
ants for a L2 lexicon is to apply an L1 phoneme recognizer to L2 speech [31].
The advantage of the latter approach is that no learner data are needed, but
a disadvantage is that phoneme recognizers for all source languages (L1s) are
needed. [31] also carried out speaker adaptation, and the improvements they
obtained with speaker adaptation were much larger than those obtained with
lexicon adaptation.

The choices regarding the language model depend to a large extent on the
design of the CALL system, the type of items present in the CALL system. In
spoken CALL systems use could be made of closed or open items. For instance,
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the learner could be asked to repeat an utterance that is spoken by the system,
or read an utterance presented on the screen. In these cases the required re-
sponses are known, which in turn makes it possible to derive specific language
models for every item. Alternatively, in some cases a language model might
not be used at all, depending on the approach that is chosen. For more open
items in a CALL system (e.g. a question, or a turn in the dialogue), a possibil-
ity is to try to elicit constrained responses. This makes it possible to activate
a specific language model for every item containing only those utterances that
are expected in that given context. In these cases, a ’stricter’ language model
can be used [33] [34] [35]. In this way, recognition performance can again be
maximized without affecting the face validity of the application. This is done,
for instance, in the Auralog programs [36]. In spite of the constraints that are
introduced to improve ASR performance, the students can still have the feeling
that they are interacting with the system and that they have control over the
conversation [36].

2.2 Utterance verification

In the literature roughly three approaches for tackling the UV problem can
be distinguished: (1) posterior probability estimation, (2) statistical hypothesis
testing and (3) confidence predictors. We will now give a short overview of
these approaches (see [37] for a more detailed overview).

(1) One approach to CM is to directly estimate the posterior probability of
the recognition result ŵ given the acoustic observations x:

p(ŵ|x) =
p(x|ŵ)p(ŵ))

p(x)
(4)

and reject the recognition result ŵ when it is below a given threshold θ. The
greatest challenge with respect to this approach is accurately estimating the
denominator p(x). One solution is to estimate it from a word lattice [38], and
this generally provides a good result when the lattice contains enough word
hypotheses. The lattice-based approach can be viewed as approximating the
posterior probability where p(x) is written as ∑i p(x|wi)p(wi) and i ranges over
all sequences of words in a pruned search space.

Another approach to estimating ∑i p(x|wi)p(wi) is using a free phone rec-
ognizer (FPR) [39] [40] and approximate:

p(x) ≈ p(x|uFPR)p(uFPR) (5)

where uFPR is the optimal phone string found using a free phone recognizer.
(2) Another popular method to UV is statistical hypothesis testing, in which

the null hypothesis H0 states that the recognition result is a correct represen-
tation of the speech signal and the alternative hypothesis Ha states that the
recognition result is not a correct representation. Then the criterion of accept-
ing the null hypothesis becomes:

p(x|ŵ)
p(x|¬ŵ)

> θ (6)

in which the numerator equals the acoustic likelihood of ŵ, the denominator
equals the acoustic likelihood of all sequences of words other than ŵ (usually
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called the anti-model) and θ a predefined threshold. The main difficulty with
this approach is defining and training the anti-model.

(3) Apart from estimating the posterior probability or statistical hypothesis
testing, another method to UV is using predictors such as

(1) acoustic stability,

(2) hypothesis density,

(3) duration information

and combine these using a machine learning model. Some machine learning
techniques that have been used in the past are artifical neural networks (ANN),
linear discriminant analysis (LDA) classifiers and binary decision trees.

Acoustic stability [38] refers to stability of the recognition result given dif-
ferent weightings of the acoustic model and language model scores. When
the recognition result remains stable given fluctuations in these weightings it
means that we can be more confident that it is correctly recognized. Hypoth-
esis density [41] refers to the average density of the word lattice generated
during decoding. When there are a lot of competing hypotheses in a pruned
search space at each point in time this means that we can be less confident
that the recognition result is correct. Duration modelling for UV usually comes
down to capturing the amount of deviation of the phoneme durations in the
recognition result from normal phone durations [42]. Deviating durations in
the recogniton result decreases the confidence that it is recognized correctly.

3 Experimental system

In Fig. 1 the architecture of our CALL system is shown. The input of the
system is the learner’s speech and a list of predicted responses in the form of
transcriptions of sequences of words. Utterance selection is then performed
to choose the best fitting (1-Best) response from this list. In the next phase
the 1-Best response is verified. If the response is accepted, error detection on
this response is carried out. Errors are detected on multiple levels, i.e. syntax,
morphology and pronunciation. If the response is not accepted, the user is
prompted to try again.

It is difficult for general Hidden Markov modelling methods to discrimi-
nate between utterances that are acoustically very similar [43]. Therefore, in the
final CALL system we will probably use the following procedure: the output of
the first step is a cluster of similar responses (e.g. according to a phonetically-
based distance measure), and a more detailed analysis is carried out in the sec-
ond (error detection) step to determine what was actually uttered and where
to give feedback on.

We will now explain the main choices we made for our system regarding
utterance selection and utterance verification procedures.

3.1 Utterance selection

In the literature many approaches have already been proposed to improve the
performance of speech recognition for non-natives. A large deal of the research
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Figure 1: System architecture.

concerned one or a small number of fixed (L1-L2) language pairs. In these
approaches material of the source language (L1) or material for specific L1-L2
pairs was employed to enhance ASR for these language pairs. However, since
our system is intended for learners of Dutch with different mother tongues,
approaches that require material of L1 or specific L1-L2 pairs are not feasible in
our case for either of the three components of an ASR system (acoustic models,
lexicon, and language model). Consequently, we made the following choices.

For the acoustic models we decided to start with training the acoustic mod-
els on Dutch native speech. Next, we used read speech of language learners
(DL2 speech) to retrain the acoustic models (see Section 4.1.4). Such retraining
of the acoustic models is also possible in a realistic CALL application, albeit not
on line, after a so-called enrolment phase, as used in dictation systems. Espe-
cially if the system has to be used extensively by a learner, it is possible to make
it as suitable as possible for that specific learner. At the level of the lexicon we
could not make use of L1 phoneme recognizers, as was done by [31], and thus
we added pronunciation variants to the lexicon that were generated by means
of data-derived rules (for further details, see Section 4.1.5). Finally, we decided
to use specific language models for every item in the CALL system that are
based on a list of predicted (correct and incorrect) responses (see Section 4.1.3).

3.2 Utterance verification

In Section 2.2 we have given a short overview of the three key approaches to
UV i.e. (1) posterior probability estimation (2) statistical hypothesis testing and
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(3) predictor combination. Most of these approaches are aimed at UV in large
vocabulary tasks, i.e. posterior probability estimation using word lattices and
predictor features like acoustic stability and hypothesis density. Furthermore,
training explicit anti-models for statistical hypothesis testing is conceptually
and practically difficult for speakers with a large variety of L1 backgrounds
[44]. For these reasons, we have chosen a form of predictor combination in
which a likelihood ratio similar to Eq. 6 in statistical hypothesis testing is com-
bined with phone durations. The rationale behind this choice is explained in
detail in Section 5.1.2.

4 Experiment 1: Utterance selection

To goal of this experiment is to develop a procedure for selecting utterances
from a list of predicted responses and to evaluate the effects of different lan-
guage models, pronunciation lexicons and acoustic models.

4.1 Method

4.1.1 Material

The speech material for the present experiments was taken from the JASMIN
speech corpus [45], which contains speech of children, non-natives and elderly
people. Since the non-native component of the JASMIN corpus was collected
for the aim of facilitating the development of ASR-based language learning ap-
plications, it is particularly suited for our purpose. Speech from speakers with
different mother tongues was collected, because this realistically reflects the
situation in Dutch L2 classes. These speakers have relatively low proficiency
levels, namely A1, A2 and B1 of the Common European Framework (CEF), be-
cause it is for these levels that ASR-based CALL applications appear to be most
needed.

The JASMIN corpus contains speech collected in two different modalities:
read speech and human-machine dialogues. The latter were used for our ex-
periments because they more closely resemble the situation we will encounter
in our CALL application. The JASMIN dialogues were collected through a
Wizard-of-Oz-based platform and were designed such that the wizard was in
control of the dialogue and could intervene when necessary. In addition, recog-
nition errors were simulated and difficult questions were asked to elicit some
typical phenomena of human-machine interaction that are known to be prob-
lematic in the development of spoken dialogue systems, such as hyperarticu-
lation, restarts, filled pauses, self talk and repetitions.

The material we used for the present experiments consists of speech from 45
speakers, 40% male and 60% female, with 25 different L1 backgrounds. Ages
range from 19 to 55, with a mean of 33. The speakers each give answers to 39
questions about a journey. We first deleted the utterances that contain crosstalk,
background noise and whispering from the corpus. After deletion of these
utterances the material consists of 1325 utterances. The mean signal-to-noise-
ratio (SNR) of the material is 24.9 with a standard deviation of 5.1.

Considering all these characteristics we can state that the JASMIN non-
native dialogues are similar to the speech we will encounter in our CALL ap-
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plication for various reasons: 1) they contain answers to relatively constrained
questions, 2) they contain semi-spontaneous speech 3) of non-natives with dif-
ferent L1s, 4) which features spontaneous phenomena such as filled pauses
and disfluencies. However, since hesitation phenomena were purposefully
induced in the JASMIN dialogues, their incidence is probably higher than in
typical non-native dialogues.

4.1.2 Speech Recognizer

The speech recognizer we used in this research is SPRAAK [46], an open source
hidden markov model (HMM)-based ASR package. The input speech, sam-
pled at 16kHz, is divided into overlapping 32ms Hamming windows with a
10ms shift and pre-emphasis factor of 0.95. 12 Mel-frequency cepstral coeffi-
cients (MFCC) plus C0, and their first and second order derivatives were cal-
culated and cepstral mean subtraction (CMS) was applied. The constrained
language models and pronunciation lexicons are implemented as finite state
machines (FSM).

To simulate the ASR task in our CALL application, we generated lists of the
answers given by each speaker to each of the 39 questions. These lists mimic
the predicted responses in our CALL application task because they contain a)
responses to relatively closed questions and b) morphologically and syntacti-
cally correct and incorrect responses.

4.1.3 Language Modelling

Our approach is to use a constrained language model (LM) to restrict the search
space. In total 39 LMs were generated based on the responses to each of the
39 questions. These responses were manually transcribed at the orthographic
level. Filled pauses, restarts and repetitions were also annotated.

Filled pauses are common in everyday spontaneous speech and generally
do not hamper communication. It seems therefore that students using a CALL
application should be allowed to produce a limited amount of filled pauses.
In our material 46% of the utterances contain one or more filled pauses and
almost 13% of all transcribed units are filled pauses.

11% of the utterances contain one or more other disfluencies such as
restarts, repairs and repetitions. While these also occur in normal speech,
albeit less frequently, we think that in a CALL application for training oral
proficiency students should be stimulated to produce fluent speech. On these
grounds, we decided not to tolerate restarts, repetitions and repairs and to ask
the students to try again when one of these phenomena is produced. There-
fore, in our research we did not focus on restarts, repairs and repetitions, we
only included their orthographic transcriptions in the LM and their manual
phonetic transcriptions in the lexicon.

The LMs are implemented as FSMs with parallel paths of orthographic tran-
scriptions of every unique answer to the question. A priori each path is equally
likely. An example of such a question is “Hoe wilt u naar deze stad reizen?”
(“How do you want to travel to this city?”) and a small part of the responses
is:

1. /ik gaat met de vliegtuig/ (/I am going by plane/*)
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2. /ik ga met de trein/ (/I am going by train/)

3. /met de vliegtuig/ (/by plane/*)

4. /met het vliegtuig/ (/by plane/)

The baseline LM that is generated from this list is depicted in Fig. 2. Each
of the parallel paths with words on the arcs represents a unique answer to a
question. Silence is possible before and after each word (not shown).

Figure 2: Baseline language model

To be able to decode possible filled pauses between words, we generated
another LM with self-loops added in every node. Filled pauses are represented
in the pronunciation lexicon as /@/ or /@m/, phonetic representations of the
two most common filled pauses in Dutch. The filled pause loop penalty was
empirically optimized. An example of this language model is depicted in Fig.
3

Figure 3: Language model with filled pause loops

To examine whether filled pause loops are an adequate way of modelling
filled pauses, we also experimented with an oracle LM. This is an LM con-
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taining the reference orthographic transcriptions, which include the manually
annotated filled pauses without filled pause loops.

4.1.4 Acoustic Modelling

We trained three-state tied Gaussian Mixture Models (GMM). Baseline tri-
phone models were trained on 42 hours of native read speech from the CGN
corpus [47]. In total 11,660 triphones were created, using 32,738 Gaussians.

As discussed in Section 2.1, it has been observed in several studies that by
adapting or retraining native acoustic models (AM) with non-native speech,
decoding performance can be increased. To investigate whether this is also the
case in a constrained task as described in this paper, we retrained the baseline
acoustic models with non-native speech.

New AMs were obtained by doing a one-pass Viterbi training based on the
native AMs with 6 hours of non-native read speech from the JASMIN corpus.
These utterances were spoken by the same speakers as those in our test mate-
rial (comparable to an enrollment phase).

Triphone AMs are the de facto choice for most researchers in speech tech-
nology. However, the expected performance gain from modelling context de-
pendency by using triphones over monophones might be minimal in a con-
strained task. Therefore, we also experimented with non-native monophone
AMs trained on the same non-native read speech.

4.1.5 Lexical Modelling

The baseline pronunciation lexicon contains canonical phonemic representa-
tions extracted from the CGN lexicon. The distribution of sizes of the 39 lexica
is depicted in Fig. 4.

As explained in Section 2.1 non-native pronunciation generally deviates
from native pronunciation, both at the phonetic and the phonemic level. To
model pronunciation variation at the phonemic level, we added pronunciation
variants to the lexicon.

To derive pronunciation variants, we extracted context-dependent rewrite
rules from an alignment of canonical and realized phonemic representations of
non-native speech from the JASMIN corpus (the test material was excluded).
Prior probabilities of these rules were estimated by taking the relative fre-
quency of rule applications in their context.

We generated pronunciation variants by successively applying the derived
rewrite rules to the canonical representations in the baseline lexicon. Vari-
ant probabilities were calculated by multiplying the applied rule probabili-
ties. Canonical representations have a standard probability of one. Afterwards,
probabilities of pronunciation variants per word were normalized so that these
probabilities sum to one.

By introducing a cutoff probability, pronunciation lexicons were created
that contain only variants above this cutoff. In this way lexicons with on aver-
age 2, 3, 4 and 5 variants per word were created.
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Figure 4: Distribution of lexicon sizes.
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4.1.6 Evaluation

We evaluated the speech decoding setups using the utterance error rate (UER),
which is the percentage of utterances where the 1-Best decoding result devi-
ates from the transcription. Filled pauses are not taken into account during
evaluation. That is, decoding results and reference transcriptions were com-
pared after deletion of filled pauses. For each UER the 95% confidence inter-
val was calculated to evaluate whether UERs between conditions were signifi-
cantly different.

As explained in the introduction, we do not expect our method to carry
out a detailed phonetic analysis in the first phase. Since it is not necessary
to discriminate between phonetically close responses at this stage, a decoding
result can be classified as correct when its phonetic distance to the correspond-
ing transcription is below a threshold. The phonetic distance was calculated
through an alignment program that uses a dynamic programming algorithm to
align transcriptions on the basis of distance measures between phonemes rep-
resented as combinations of phonetic features [48]. These phonemic transcrip-
tions were made using the canonical pronunciation variants from the words in
the orthographic transcriptions.
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AM LM 0 5 10 15
native (tri) without loops 28.9 28.4 26.1 24.6
native (tri) with loops 14.9 14.6 12.6 11.0
native (tri) with positions 14.7 14.4 13.1 12.0
non-native(tri) without loops 22.4 22.0 19.9 18.4
non-native(tri) with loops 10.0 9.7 7.9 6.9
non-native(tri) with positions 9.4 9.1 7.8 7.1
non-native(mono) with loops 11.9 11.5 9.3 8.1

Table 1: This table shows the UERs for the different language models: without
FP loops, with FP loops and with FP positions, and different acoustic models:
trained on native speech (triphone) and retrained on non-native speech (tri-
phone and monophone). All setups used the baseline canonical lexicon. The
columns 0, 5, 10, 15 indicate at what phonetic distance to the reference tran-
scription the decoding result is classified as correct.

Response 1 2 3 4
1 0.0 - - -
2 20.5 0.0 - -
3 15.0 23.5 0.0 -
4 23.5 30.0 10.0 0.0

Table 2: Phonetic distances between the example responses: (1) ’ik gaat met de
vliegtuig’, (2) ’ik ga met de trein’, (3) ’met de vliegtuig’, (4) ’met het vliegtuig’.

4.2 Results

In Table 1 the UERs for the different language models and acoustic models
can be observed. In all cases, the LM with filled pause loops performed sig-
nificantly better than the LM without loops. Furthermore, the oracle LM with
manually annotated filled pauses (with positions) did not perform significantly
better than the LM with loops.

Decoding setups with AMs retrained on non-native speech performed sig-
nificantly better than those with AMs trained on native speech. The perfor-
mance difference between monophone and triphone AMs was not significant.

As expected, error rates are lower when evaluating using clusters of pho-
netically similar responses. To better appreciate the results in Table 1 it is im-
portant to get an idea of the meaning of these distances. The distances between
the example responses in Section 4.1.3 are shown in Table 2. The density of the
phonetic distances between all response pairs to all questions is depicted in Fig.
5. Since there are only few responses with a phonetic distance smaller than 5,
differences between 0 and 5 are marginal. Performance differences between 0
(equal to transcription) and 10 (one of the answers with a phonetic distance of
10 or smaller to the 1-Best equals the transcription) and between 5 and 15 were
significant.

As can be seen in Table 3, performance decreased using lexicons with pro-
nunciation variants generated using data-driven methods. The more variants
are added, the worse the performance. Furthermore, there is no significant
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Figure 5: The distribution of phonetic distances between all response pairs to
all questions.
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difference between using equal priors or estimated priors.

4.3 Discussion

The results presented in the previous section indicate that large and significant
improvements could be obtained by optimizing the language model and the
acoustic models. On the other hand, pronunciation modelling at the level of
the lexicon did not produce significant improvements. On the contrary, adding
variants to the lexicon caused a decrease in performance. Adding estimated
prior probabilities to the variants improved the results somewhat, but still the
error rates remain higher than those for the canonical lexicon. These results
might be surprising because, in general, adding a limited number of carefully
selected pronunciation variants to the lexicon helps improve performance to a
certain extent [29] [30]. However, in the case of non-native speech this strategy
is not always successful [31]. Possible explanations might be sought in the na-
ture of the variation that characterizes non-native speech. Non-native speakers
are likely to replace target language phonemes by phonemes from their mother
tongue [5] [3]. When the non-native speech is heterogeneous in the sense that
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Lex Priors 0 5 10 15
canonical - 10.0 9.7 7.9 6.9
2 var no 10.0 9.9 8.2 6.7
2 var yes 10.0 9.7 8.3 7.0
3 var no 11.2 10.9 8.5 7.1
3 var yes 10.6 10.1 8.7 7.2
4 var no 11.5 11.3 8.9 7.5
4 var yes 10.4 10.9 9.7 7.2
5 var no 11.5 11.3 8.9 7.5
5 var yes 10.4 10.0 8.7 7.2

Table 3: UERs for different lexicons: canonical, 2-5 variants with and without
priors. These rates are obtained by using non-native triphone acoustic models
and language models with filled pause loops.

it is produced by speakers with different mother tongues, as in our case, it
may be extremely difficult to capture the rather diffuse pattern of variation by
including variants in the lexicon (see also [4]).

The findings that better results are obtained with non-native acoustic mod-
els and with a language model with filled pause loops are not surprising, after
all the utterances are spoken by non-natives, recorded in the same environment
and contain a lot of filled pauses. In fact, these results do not differ significantly
from the results obtained with an oracle language model, in which the exact
position of the filled pauses is copied from the manual transcriptions. This
is an important result because non-natives are known to produce numerous
filled pauses in unprepared, extemporaneous speech [12]. From these results
we can conclude that external filled pause detection, for which better results
were found for a large vocabulary task [49], is not necessary in this case.

Another reassuring result is that performance improved using non-native
acoustic models. These were obtained by retraining native models on a rela-
tively small amount (around 8 minutes per speaker) of non-native read speech
material. It appears that this was sufficient to obtain significantly better results.
In the final application we might then use a relatively short enrolment phase
and do acoustic model retraining (and/or online speaker adaptation), to obtain
better recognition results.

While in this experiment the correct transcription of the response was al-
ways in the language model, our system must also be able to reject utterances
when they are not present in the language model, while still accepting correctly
recognized utterances. This is the topic of the experiment presented in the next
section.

5 Experiment 2: Utterance verification

The goal of this experiment is to develop a procedure for utterance verication.
Our approach consists of combining an acoustic likelihood ratio with duration-
related predictors into one confidence measure.
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5.1 Method

5.1.1 Material

We used the same material as in the first experiment, but to simulate the case
in which the spoken utterance is not present in the list, we also generated lan-
guage models in which the correct utterance is left out. In this way, each of
the 1325 utterances in our dataset is decoded two times: one time when its
representation is present in the language model and one time when it is not
present.

5.1.2 Confidence predictors

As mentioned in Section 4.2, posterior probability estimation using rich word
lattices is often used in large vocabulary applications, where it usually provides
accurate confidence measures, although it is computationally expensive. Since
in our case the search space only contains a limited set of sequences of words,
the decoding lattice is not rich enough to estimate p(x) (Eq. 4.). Estimating
p(x) on the basis of a free phone recognizer (FPR) is a more simple and faster
approach, generally giving reasonably good results. For these reasons, we have
used the ratio

p(x|ŵ)p(ŵ)
p(x|uFPR)p(uFPR)

(7)

as our baseline confidence measure. However, because we have equal prior
probabilities for all language model paths and we do not use a language model
during free phone recognition the priors p(ŵ) and p(uFPR) can be discarded
and Eq. 7 boils down to:

LR =
p(x|ŵ)

p(x|uFPR)
(8)

This ratio bears a close relation to Eq. 6 used in the statistical hypothesis
testing approach to UV. The main difference is that in the denominator in Eq.
8 all paths are used, while in Eq. 6 only the alternative paths are used to com-
pare with the recognition result to be verified. Modelling the alternative paths
in an anti-model is especially difficult in our task because it is very difficult
to determine what exactly it should represent if the utterance is produced by
language learners with generally low levels of proficiency and very diverse L1
backgrounds (see also [44]). Furthermore, training such an anti-model requires
a large amount of non-native speech data that is not available for Dutch.

We hypothesize that combining our baseline CM (LR) with other predictors
that contain additional information about the quality of the recognition result
will give better results than using LR alone. However, using the average hy-
pothesis density in the word lattice as a predictor is probably not informative
because in our task the word lattice is very small and contains very few com-
peting hypotheses. Furthermore, a predictor like acoustic stability is difficult
to define because different weightings of the language model have no effect on
the combination score (because a priori each sequence of words in the language
model is equally likely).

We expect that phone durations might contain additional information, be-
cause the phone segmentation of an incorrectly decoded sequence of words
will generally be characterized by deviations in phone durations and this is
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not directly coded in the acoustic likelihoods in LR. Therefore, we want to add
information about these phone duration deviations.

When the input speech representation is not present in the list and the utter-
ance is recognized as another sequence of words that is present in the LM, the
phone segmentation of this sequence of words will generally be characterized
by deviations in phone durations. A straightforward way to capture this is to
count the phones in the segmentation with durations that deviate substantially
from the mean phone duration. We have implemented this by using predictors
similar to those introduced in [42].

Phone duration distributions were derived from manually verified phone-
mic transcriptions of 42 hours of read native speech from the CGN corpus [47].
For each of the 46 phonemes the 1st, 5th, 95th and 99th percentile duration
was calculated from these distributions. The predictors that were extracted
from the segmentation are the number of phonemes in the decoded utterance
that are shorter than the 1st (nr shorter 1) and 5th (nr shorter 5) percentile and
the number of phonemes that are longer than the 95th (nr longer 95) and 99th
(nr longer 99) percentile durations. These predictors were normalized by the
total number of phonemes in the recognized utterance.

5.1.3 Predictor combination

To combine the five predictors, i.e. LR, nr shorter 1, nr shorter 5, nr longer 95,
nr longer 99, into one confidence measure we have used a logistic regression
model. Logistic regression modelling is a straightforward and fast method
known to produce accurate predictions when a binary variable is a linear func-
tion of several explanatory variables [50]. It fits the logit of the probability
(logarithm of the odds) of a binary event as a linear function of the set of ex-
planatory variables:

logit(p(y|p)) =
p(y|p)

1− p(y|p)
= β0 +

N

∑
i=1

βixi (9)

where p(y|p) is the probability of a correctly or incorrectly decoded utter-
ance y given the confidence predicting variables p. The optimal weights β are
chosen through Maximum Likelihood Estimation (MLE) in WEKA [51]. We
trained and tested the model by using Leave- One-Speaker-Out crossvalida-
tion where the model is trained on all speakers except one and then tested on
the utterances of the speaker that were left out during training. This is repeated
until all speakers are tested.

5.1.4 Evaluation

We evaluated the discriminative ability of our utterance verifier using Receiver
Operator Characteristic (ROC) curves, in which the two types of error rates, i.e.
the false positive rate and false negative rate, are plotted for different thresh-
olds. Using the point on the ROC curve where the error rates of both types
are equal, the equal error rate (EER), the different confidence indicators and
their combinations are evaluated. 95% confidence intervals were calculated to
investigate whether differences between EERs were significantly different.
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Features EER
LR 14.4%
nr shorter 1 27.3%
nr shorter 5 27.4%
nr longer 95 35.8%
nr longer 99 38.5%
duration comb 25.3%
all 10.3%

Table 4: Equal error rates (EER) for the individual features LR, nr shorter 1,
nr shorter 5, nr longer 95, nr longer 99 and the combinations duration comb
(nr shorter 1,nr shorter 5,nr longer 95, nr longer 99) and all features, all.

5.2 Results

The utterance error rate (UER) of our speech decoder on the set of decoding
results where the correct transcription was present in the LM was 10.0% (see
Section 4.2). In this case errors consist of substitutions with competing lan-
guage model paths. The UER on the set without the correct transcriptions in
the LM was of course 100.0%, so on average 55.0% of all the cases was incor-
rectly recognized.

The task for the UV was to discriminate the correctly and incorrectly recog-
nized cases. In Table 4 this ability is shown in terms of EER for the individual
predictors and several predictor combinations. ROC curves of the best per-
forming predictor and two combinations are shown in Figure 6.

Within the individual predictors LR performs best (14.4%) and all the
duration-related predictors perform much worse. The best result for a single
duration predictor is 27,3% for nr shorter 1. When we combined all duration-
related predictors, duration comb, the EER relative to the best performing
duration-related predictor dropped significantly from 27.3% (with a confidence
interval ±1.7) to 25.3%. Finally, by combining the LR with duration comb, the
EER relative to LR decreased significantly by 4.1% from 14.4% to 10.3%.

In Table 5a and 5b percentages are shown using the EER threshold and us-
ing all predictors for the two different sets of decoding results, with and with-
out the correct transcription in the LM, respectively. For example, in the set
of results with the correct transcription in the LM 80.8% is classified as cor-
rect when it indeed was correctly decoded and 9.2% was classified as incorrect
(false reject). In the set without the correct transcription in the LM 91.7% was
classified as incorrect when it was incorrectly decoded, and 8.3% was classi-
fied as correct (false accept). The performance on the whole dataset is shown
in Table 5c.

5.3 Discussion

The duration-related predictors have a weak performance individually, but
they still contain additional information relative to the likelihood ratio LR. The
duration-related predictor distributions of correctly and incorrectly decoded
utterances overlap severely. This was still the case when we normalized these
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Figure 6: ROC curves for the feature LR and the combinations duration comb
and all.

(a)

actual
correct incorrect

predicted correct 80.8% 3.0%
incorrect 9.2% 7.0%

(b)

actual
correct incorrect

predicted correct - 8.3%
incorrect - 91.7%

(c)

actual
correct incorrect

predicted correct 40.4% 5.6%
incorrect 4.6% 49.4%

Table 5: Percentages of correctly and incorrectly classified decoding results
of the two different subsets and the total set using the global EER threshold
and all predictors. (a) Percentages of decoding result classification on the set
where the correct transcription was in the language model. b) Percentages of
decoding result classification on the set where the correct transcription was not
present in the language model. (c) Percentages of decoding result classification
on the whole dataset.

predictors for the speaking rate within the utterance or when we used the prob-
ability of the phoneme durations in the utterance as a predictor. The latter we
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calculated through a kernel density estimation of the duration probability den-
sity per phoneme trained on the CGN native read speech data. Using these
more complex predictors the model was not able to make substantially better
predictions.

By introducing an UV procedure and using the EER threshold we are able to
filter out 91.7% of the utterances that are not in the predicted list of responses.
This comes with the cost of also rejecting utterances that are correctly decoded
and accepting utterances that are incorrectly decoded. The ratio between these
error rates depends on the threshold setting. We will discuss threshold calibra-
tion in the next section.

6 General Discussion

We carried out two experiments in order to evaluate methods for utterance se-
lection and utterance verification which are going to be used in a CALL appli-
cation for low-proficient L2 learners of Dutch. For utterance selection with the
transcription of the response in the language model, our best error rates were
between 10.0%-6.9% after optimizing acoustic and language models. In 90%
of the cases the decoding result was equal to the corresponding transcription
of the response (phonetic distance of 0) and in 93.1% of the cases the decoder
was able to select a cluster of transcriptions with a phonetic distance of 15 or
smaller to the 1-Best in which the corresponding transcription was present.

Using an utterance verifier that combined acoustic likelihoods and duration
information of the decoding result, 89.8% of the correctly decoded responses
is accepted and 70% of the incorrectly decoded utterances could be rejected
when the transcription of the response was present in the language model. In
addition, 91.7% of the utterances with no representation in the language model
could correctly be rejected.

These results apply when we only perform error detection to the 1-Best
decoding result, but as explained in Section 3 error detection will probably be
performed on the cluster of responses that have a small phonetic distance to
the 1-Best decoding result. For example, if it is not clear whether a segment or
a (short) word was pronounced or not, this can be ascertained in the second
step through a more detailed analysis [19]. At the moment we think that in the
second step we can handle utterances with a phonetic distance smaller than 5,
which usually corresponds to a difference of 1 or 2 segments, or possibly even
utterances with a phonetic distance smaller than 10, which often boils down to
a deviation by a short word. For the latter category the best result obtained is
an error rate of around 8%. This is encouraging, especially if we keep in mind
that in a language learning application we can be conservative, in the sense that
if we are not sufficiently confident about the recognition result we can always
ask the language learner to try again.

Until now we have evaluated the performance of UV using the EER thresh-
old, but this might not be the optimal threshold setting in the actual applica-
tion. In our application the recognized utterance will be probably shown to
the user so that he/she knows whether the utterance was correctly recognized,
and where the feedback is based on. If the system makes an error in recogniz-
ing the utterance, this will then be clear for the user. The system can make two
types of errors: a) a false rejection, in which case a correctly decoded utterance
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is classified as incorrect by the UV or b) a false acceptance, in which case an
incorrectly decoded utterance is classified as correct. To determine which of
these errors is more detrimental at this stage of the application, it is necessary
to consider how such errors can be handled in the application and what their
possible consequences are. In the case of a rejection, and therefore also of a
false rejection, it is possible to ask the user to repeat the utterance. In concrete
terms then, a false rejection implies that the user is unnecessarily asked to re-
peat the utterance. In the case of a false acceptance an utterance will be shown
to the user that (s)he actually did not produce. This type of error would seem
to be more detrimental because it can affect the credibility of the system.

However, the degree of seriousness will depend on the degree of discrep-
ancy between the utterance that was actually produced and the one that was
recognized and shown by the system: the larger the deviation the more serious
the error. On the other hand, large deviations are less likely than small devi-
ations. On the basis of such considerations we can indicate the seriousness of
the two types of errors and therefore the costs that should be assigned to false
rejections and false acceptances.

There are now three different factors that are important in choosing an
application-dependent threshold, namely 1) the prior probability of a correct
decoding pcorrect, 2) the cost of a false rejection CFR and 3) the cost of a false ac-
ceptance CFA. To formalize the idea of taking into account different error costs
and different prior distributions in the process of choosing a threshold, we can
estimate the total cost of a specific threshold setting with a cost function:

Ctotal = pFRCFR pcorrect + pFACFA(1− pcorrect) (10)

where pFR and pFA are the probabilities of false rejection and false accep-
tance respectively. This kind of cost function is also used in the NIST eval-
uation of speaker recognition systems [52]. Minimizing Ctotal on a devel-
opment set will provide us with the optimal threshold setting given the
application-dependent parameters CFR, CFA and pcorrect. Using the UV with
this application-dependent threshold calibration procedure could make an ex-
cellent research vehicle for future experiments with different error costs.
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