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Frequent pronunciation errors made by L2 learners of Dutch 
often concern vowel substitutions. To detect such pronunciation 
errors,  ASR-based  confidence  measures  (CMs)  are  generally 
used. In the current paper we compare and combine confidence 
measures with MFCCs and phonetic features. The results show 
that the best results are obtained by using MFCCs, then CMs, 
and finally phonetic features, and that substantial improvements 
can be obtained by combining different features.

I. INTRODUCTION

The  application  of  Automatic  Speech  Recognition  (ASR) 
technology to second language (L2) learning, and in particular 
to pronunciation training,  has  received  growing attention in 
the last decade [1]. Our institute has been involved in applying 
ASR to pronunciation training in  several  projects,  e.g.  [30]
[31][32][33]. The research presented here is carried out within 
the  framework  of  the  DISCO  project,  which  is  aimed  at 
developing a prototype of an ASR-based CALL application 
that  provides  feedback  on  Dutch  L2  pronunciation, 
morphology, and syntax [30].

The  use  of  ASR  technology  is  especially  advantageous 
when it comes to identifying specific pronunciation errors and 
providing corrective feedback to the learners. L2 learners do 
indeed  appear  to  have  difficulties  in  identifying  their  own 
pronunciation errors [2]. This suggests that Computer Assisted 
Language  Learning  (CALL)  programs  that  can  provide 
automatic corrective feedback on pronunciation are preferred 
to systems that can only offer the opportunity of listening and 
repeating L2 speech without corrective feedback. In line with 
these  requirements  several  studies  have  addressed 
pronunciation error detection through ASR [3][4][5][6]. The 
main challenge in these approaches is to develop algorithms 
that achieve sufficient accuracy in error detection so that the 
feedback  provided  to  the  learners  is  not  misleading.  In 
general, achieving sufficient detection accuracy is particularly 
challenging exactly for those sounds that are easily confused 
or mispronounced by L2 learners.

Pronunciation errors in a second language can derive from 
several sources. An important limiting factor in acquiring the 
pronunciation of an L2 is considered to be interference from 
the  first  language  (L1)  [7],  which  can  affect  L2  speech 
production both at the prosodic and at the segmental level. L2 
learners  may  have  difficulties  with  the  different  syllable 
structure  of  the  language  to  be  learned,  its  rhythm  and 
temporal  organization,  its  phonemic  inventory  and 
phonotactics.  Here  we will  focus on segmental  aspects.  L2 

learners  might  insert  or  delete  speech  sounds,  realize  L2 
phonemes incorrectly or even use phonemes from their L1. In 
particular, L2 learners may find it difficult to realize certain 
phonetic contrasts, either because they do not exist in their L1, 
or because they do exist but are not phonologically distinctive. 
Consequently,  when  trying  to  pronounce  L2  phonemes,  L2 
learners  may  end  up  producing  L1  phonemes  that  are 
somewhat  similar but  not  identical.  In  such cases  relatively 
subtle  acoustic  distinctions  may  lead  to  phonemic 
substitutions.  Identifying  those  errors  is  of  course  more 
difficult  than  identifying  substitutions  of  sounds  that  are 
acoustically more different.

For  these  reasons,  various  studies  in  pronunciation  error 
detection have focused on sets of L2 phonemes that are very 
similar  in acoustic and articulatory terms, in attempts to find 
accurate methods of identifying the mispronounced sounds. In 
general, ASR-based confidence measures (CMs) like posterior 
probabilities  or  the  Goodness  of  Pronunciation  measure 
(GOP) are used for pronunciation error detection [8][3][4][5]. 
These CMs give an indication of how confident the recognizer 
is  that  a  given target  sound was pronounced:  the lower the 
confidence,  the  higher  the  chance  that  another  sound  was 
pronounced. Such measures have the advantage that they can 
be obtained fairly easily with an ASR system and they can be 
calculated in similar ways for all speech sounds. 

However,  since  segmental  pronunciation  errors  tend  to 
concern  specific  phonetic  contrasts  that  pose  special 
difficulties  to  L2  learners,  a  promising  approach  to 
pronunciation error detection might be one that uses phonetic 
information related to the problematic contrasts. Along these 
lines, [9] and [10] developed dedicated classifiers to identify 
pronunciation errors that appeared to be frequent in Dutch L2 
and that concerned relatively subtle distinctions such as that 
between  fricatives  and  plosives  and  that  between  long  and 
short vowels. 

In [9] it was shown that good classification results can be 
obtained  by  using  phonetic  features;  more  specifically,  by 
using more general  features for vowels (formants, pitch and 
duration),  and  very  specific  features  for  differentiating  a 
plosive from a fricative.  In [10] a comparison was made of 
different  approaches  for  differentiating  a  plosive  from  a 
fricative.  A  method  in  which  phonetic  features  were  used 
together  with  LDA  performed  better  than  GOP.  However, 
similar results were obtained for MFCCs in combination with 
an LDA. 



So, on the one hand phonetic features seem to be promising 
for classification, but on the other simply using MFCCs also 
provides good results. Furthermore, the results for these two 
methods were better than those for GOP, for the specific cases 
that were studied. These interesting results led to a number of 
questions:  how  these  different  methods  would  perform  on 
other  sounds,  and  whether  something  could  be  gained  by 
combining different measures. In the current study we tried to 
answer these questions.

The  outline  of  the  paper  is  as  follows.  In  section  2  we 
explain  the  background  of  this  research.  In  section  3  we 
describe  the  material  used  and  the  method  adopted  in  our 
experiments.  The  results  are  presented  in  section  4  and 
discussed in section 5.

II. RESEARCH BACKGROUND

Considering that L2 pronunciation errors are often related to 
interference from the L1, it seems very advantageous to have 
CALL systems that are designed for specific combinations of 
L1 and L2, and that can address the errors you would expect 
for those specific combinations, for instance German, Italian, 
Chinese or Japanese students learning English [11][5][12], or 
Americans learning French [13]. In general, using such fixed 
combinations of languages also has considerable advantages 
from the point of view of ASR technology: speech recognition 
is  facilitated  and  pronunciations  errors  are  more  easily 
predictable. However, the feasibility of such systems heavily 
depends on the number of students and the approach used in 
L2 classes. 

In  the  Netherlands,  it  is  common  practice  to  have 
heterogeneous L1 groups of learners in Dutch L2 classes. For 
this  reason,  in  our  research  on  ASR-based  pronunciation 
training  for  Dutch  L2  [6][10][14]  we  have  focused  on 
pronunciation  errors  that  can  be  made  by  any  learner, 
regardless  of  his/her  L1.  Although  it  is  known  that 
pronunciation errors are likely to be affected by the L1, in our 
research we also found that, at least for Dutch, it is possible to 
identify a set of phonemes that are particularly problematic for 
many L2  learners  with  different  mother  tongues  [14].  This 
research and observations by Dutch L2 teachers indicate that, 
in general, vowels are more problematic than consonants [14], 
which  may partly  be  due  to  the  relatively  high  number  of 
vocalic phonemes in Dutch compared to other languages [15]
[16]:  Dutch  has  13 monophthongs,  3  diphthongs  and  some 
additional vowels found mainly in loan words [17]. 

The vocalic pronunciation errors, which concern almost all 
vowels and very often the diphthongs, appear to be related  to 
difficulties  with  actually  pronouncing  the  sounds  and  to 
orthographic interference [14]. In particular, vocalic errors are 
concentrated on realising a number of contrasts that many L2 
learners are not familiar within their L1s,  such as /a/ versus 
/A/, /e/ versus /E/, /o/ versus /O/, /i/ versus /I/, /u/ versus /y/, 
/u/ versus /Y/ and  /y/ versus /Y/ (SAMPA notation [34]). The 
problems in  realising such contrasts  are  not  only related to 
their  absence  in  the  learner’s  L1,  but  also  to  Dutch 
orthography,  as  sometimes  the  same  grapheme  is  used  to 
indicate  two different  phonemes.  For  instance  in  the words 

“bonen” (beans) and “bom” (bomb) the grapheme “o” stands 
for the phoneme /o/ in the first word and for /O/ in the second 
word,  Similarly,  in  the  words  “buren”  (neighbours)  and 
“bussen” (buses) the grapheme “u” represents the phoneme /y/ 
in the first word and /Y/ in the second word

The vowels  /a/,  /e/,  /o/,  and /i/  are  generally longer  than 
their short counterparts /A/, /E/, /O/ and /I/, but the distinction 
between long and short  vowels seems to be based more on 
phonological grounds than on phonetic ones [18]. /e/ and /o/ 
are longer than /E/, /O/ respectively, while the high vowels /i/, 
/y/  and  /u/  are  longer  than  /I/  and  /Y/  only  when they  are 
followed by /r/ [18]. According to [19] the difference in length 
between  the  long  and  the  short  vowels  only  appears  in 
prosodically strong positions, a strong syllable in a foot.

In  addition,  duration  is  not  the  only  characteristic  that 
distinguishes the long vowels from their short counterparts, as 
the  spectral  characteristics  also  vary  [18][17].  The  vowels 
/e/, /o/, /i/,  /u/ and /y/  are higher  than /E/, /O/, /I/,  and /Y/, 
respectively.  /y/ and /Y/ are more fronted than /u/ and /a/ is 
more fronted than /A/.

Since  many  languages  do  not  have  such  a  distinction 
between vowel pairs that are associated with one grapheme, 
but have different realisations such /a/ and  /A/, /e/ and  /E/, 
/o/ and /O/, /i/ and /I/, /u/ and /y/, /u/ and /Y/ and /y/ and /Y/, 
L2 learners tend to produce attempts at pronouncing either of 
the two vowels in a pair, for instance /a/ or /A/, that often fall 
in between. Depending on the amount of deviation from the 
target sound these attempts will be classified as either /A/ or 
/a/. Problems arise when the amount of deviation is such that 
an attempt at producing /A/ is perceived as /a/ or vice versa, 
because in such cases another word will be pronounced than 
the intended one, for instance /maan/ (moon), instead of /man/ 
(man). 

Given  the  difficulties  posed  by  the  above-mentioned 
vocalic  contrasts  to  Dutch  L2  learners,  we  set  out  to 
investigate whether it is possible to develop specific measures 
that  achieve  high  accuracy  in  identifying  the  resulting 
pronunciation errors.

III. METHOD

A. Material

The speech material  for our experiments was taken from 
the Spoken Dutch Corpus (CGN), a large corpus of Dutch as 
spoken  in  the  Netherlands  and  Flanders  by  adult  native 
speakers.  CGN contains  about  9  million words and a great 
variety  of  speakers  of  different  age,  gender,  and  region  of 
origin, recorded in various socio-situational settings [20]. 

The speech material was extracted from the Northern Dutch 
part of CGN, and stems from 4 different components of CGN: 
read  speech,  and  different  broadcast  speech  material 
components that can be subsumed under the label ‘broadcast 
monologues’.  The  RS  material  was  recorded  from  trained 
speakers  who  read  aloud  novels  in  a  studio  environment, 
while the BM fragments were produced by speakers who were 
accustomed  to  speaking  in  public.  These  components  are 
among the most formal in CGN, and reflect well the types of 



speech that will be encountered in the final application. We 
used the RS material as our training set and the BM material 
as our test set.

CGN is a corpus of native speech and as such it does not 
contain  the  pronunciation  errors  L2  learners  usually  make. 
Although there are databases of non-native speech, these were 
considered to be too small for the purpose of this research. 
Given that the vocalic errors we wanted to investigate in this 
study  concern  phonemic  substitutions,  these  can  be  easily 
simulated by artificially introducing them in a native corpus. 
In previous research we have used this procedure [6][21] and 
have  seen  that  it  works  properly,  as  long  as  the  simulated 
errors reflect errors that are actually made by L2 learners.

Errors that are often made by L2 learners are substitutions 
of the phonemes mentioned in Table 1 (see, e.g., [13]). Based 
on  this  information  on  how  Dutch  phones  are  frequently 
mispronounced  by  L2  learners,  the  CGN  material  was 
manipulated  in  such  a  way  that  realistic  L2  errors  were 
introduced.  For  instance,  in  order  to  train  and  evaluate  the 
classification of /a/, all occurrences of /A/ in the transcriptions 
were replaced by /a/;  and analogously for the other vowels. 
For more details on the procedure and on results showing that 
the classifiers obtained in this way show similar performance 
for real  errors in non-native speech the reader is referred to 
[21].  Frequencies  of  the  vowels  under  investigation  in  our 
material are shown in Table II.

TABLE I
SUBSTITUTIONS OFTEN MADE BY L2 LEARNERS. EACH ROW CONTAINS PHONEMES THAT 

ARE OFTEN CONFUSED, TOGETHER WITH AN EXAMPLE OF A DUTCH WORD IN WHICH THEY 
APPEAR (AND AN ENGLISH TRANSLATION).

/a/ maan (moon), /A/ man (man)

/i/ liep (walked), /I/ lip (lip)

/e/ leeg (empty), /E/ leg (put)

/o/ boon (bean), /O/ bon (ticket)

/u/ boek (book), /y/ vuur (fire), /Y/ bus (bus)

B. Feature Calculation

First, segmentations of the material were obtained through 
forced alignment.  The segmentations were subsequently used 
to calculate a number of features. Details on the calculation of 
these features are provided below.

1)  ASR-based Features

As our baseline we employed  the widely used segmental 
confidence  measure  (CM)  introduced  in  [8]  which  is  the 
average  frame-based  posterior  probability  (AFBPP)  of  a 
forced aligned phone given the acoustic observations. 

The AFBPP of a phone ph is calculated as:

afbpp  ph =
1

te−tb1
∑
t=tb

t e

log p st
i
∣x t 

where p(si
t|xt) is the frame based posterior probability of the 

forced aligned state si at time t given the observation vector xt. 
p(si

t|xt) is calculated as:

p  st
i∣x t =

p  x t∣st
i
 p  st

i


∑ j

N
p  x t∣st

j
 p  st

j


where the summation in the denominator ranges  over  all  N 
states of all triphone models. We will refer to this confidence 
measure as CMseg. The HMM models for the automatic phone 
alignment  were  trained  with  SPRAAK  [22].  As  training 
material we used the RS material from the CGN corpus.

For  preprocessing  purposes  the input  speech,  sampled  at 
16kHz,  is  first  divided  into  overlapping  32ms  Hamming 
windows with a 10ms shift and pre-emphasis factor of 0.95. 
12 Mel-frequency cepstral coefficients (MFCCs) plus C0, and 
their first  and second order  derivatives  were  calculated and 
cepstral  mean  subtraction  (CMS)  was  applied.  47  3-state 
Gaussian  Mixture  Models  (GMM) were  trained:  46  phones 
and  1 silence  model.  In  total  11,660 triphones  are  created, 
using 32,738 Gaussians.

Apart from averaging the frame-based probability over the 
whole segment, we also averaged over the three consecutive 
hidden states to model vowel onset/offset  dynamics,  hereby 
obtaining three state-based confidence measures. To this set of 
three features will be referred to as CMstate.

2)  MFCCs

The 13 MFCCs, and their first and second order derivatives 
(as  described  above),  were  included  in  our  feature  set.  We 
extracted MFCC-based features at three points in time within 
the segment, i.e. the windows closest to 25%, 50% and 75% 
of the length of the vowel. This makes a total of 117 (3x3x13) 
features referred to as MFCCs.

3)  Phonetic Features

Using PRAAT [23], the first three formants (F1,F2 and F3) 
and F2-F1 were  measured at  the same three  points in time 
(25%,  50% and 75%).  In  addition  to  these  12  features  the 
mean  pitch  (F0)  and  intensity  of  the  segments  were  also 
calculated.  Since  these  measures  can  show  considerable 
variation between speakers we carried out a normalization at 
the  speaker  level.  [24]  compared  different  vowel 
normalization procedures, and the best results were obtained 
with  Lobanov's  Z-score  transformation  [25].  Therefore,  we 
also  applied  Lobanov's  Z-score  transformation  to  our  data. 
These  14  normalized  features  will  be  referred  to  here  as 
Spectral. Apart from spectral measures, we also extracted the 
raw  segment  durations  from  the  automatically  generated 
segmentation. 

The durations of the three hidden states were also included. 
Apart  from the 4 raw durations, we also included durations 
normalized for the articulation rate in the utterance, making a 
total of 8 duration features, referred to as Duration.

C. Classification: training and evaluation

For classification, we utilised support vector machines (SVM) 
with a linear kernel function using the LibSVM package [26]. 
The reason for choosing a linear kernel was that it performed 
as  well  as  several  non-linear  kernels,  i.e.  Radial  Basis 
Function  (RBF)  and  polynomial  kernels,  and  requires 



considerably  less  CPU  time.  For  each  vowel,  a  different 
classifier was trained after cost parameters had been optimised 
through 10-fold cross-validation on the training set.

TABLE II
FREQUENCIES OF VOWELS IN TRAINING AND TEST SET

Phone Training set Test set

/a/ 7988 4193

/A/ 11092 5895

/i/ 5411 3328

/I/ 6967 3848

/e/ 6689 3867

/E/ 8242 4195

/o/ 5620 3100

/O/ 6359 3586

/u/ 2127 1078

/y/ 957 574

/Y/ 1600 824

Total 63052 34488

First,  the  individual  performance  of  all  feature  sets  was 
examined.  Afterwards,  feature  sets  were  combined.  We 
evaluated the performance of each classifier with the Equal 
Error  Rate  (EER)  on  the  Receiver  Operating  Characteristic 
(ROC)  curve.  Furthermore,  95%  confidence  intervals  were 
calculated  to  test  whether  differences  between  performance 
were significant. 

IV. RESULTS

In Table III it is shown how the different feature sets perform 
(as EER) for the different vowels. On the whole, the results 
for MFCCs are somewhat better than those for the CMs. For /
a/-/A/,  /i/-/I/,  /e/-/E/  and  /y/  better  results  are  obtained  for 
MFCCs. The results for CMseg and CMstate do not differ much: 
for  /a/  and  /o/  significantly  better  results  are  obtained  with 
CMstate,  for  /A/  CMseg   performs  significantly  better.  The 
phonetic  feature  sets  Spectral and  Duration alone  achieve 
about 60-80% correct. 

In Table IV the performance for combinations of different 
feature sets is  shown. Significant  performance gains  can be 
obtained  by  adding  Duration to  MFCCs  and  CMs  for  /a/, 
/A/, /o/ and /O/. The combinations of  Spectral and  Duration 
perform equally or better than the two sets individually,  but 
worse than the combination of MFCCs and Duration. Adding 
CMs to the latter combination helps to lower the error rate for 
almost  all  phones,  except  /I/.  Differences  between 
combinations with CMseg or CMstate are not significant.

V. DISCUSSION

Within each  subset  of  vowels,  the  results  are  based  on the 
same tokens. For instance, for the /a/ classification results, all 

occurrences  of /A/ in the transcriptions are replaced by /a/, 
and for the /A/ results it is just the other way around. Thus it 
may be surprising to see that the results for the long and the 
short vowels are not the same. The reason for this discrepancy 
is that for the /a/ classification the acoustic model for /a/ was 
used to obtain the automatic segmentations, while for the /A/ 
classification the same tokens were automatically segmented 
by using the acoustic model for /A/. This is also how it will be 
done  in  the  application.  Inspection  of  the  segmentations 
indeed revealed  that  the begin  and end times do vary.  The 
smallest differences are observed for the /o/ vs. /O/ pair, while 
the largest ones pertain to the /u/ vs. /y/ and /Y/ distinction. 
This  explains  the  large  performance  differences  within  the 
latter group.

TABLE III
EQUAL ERROR RATES FOR INDIVIDUAL FEATURE SETS: CMSEG, CMSTATE, MFCCS, 
SPECTRAL AND DURATION. ASTERIKS (*) INDICATE THE BEST PERFORMING FEATURE 

SETS. 

Target CMseg CMstate MFCCs Spectral Duration

/a/ 17.0 15.9 13.8* 29.8 19.6

/A/ 22.9 24.7 14.1* 30.3 25.1

/i/ 18.7 19.0 13.4* 24.4 30.3

/I/ 22.9 22.2 13.9* 22.3 40.8

/e/ 11.4 10.7 9.7* 17.7 17.7

/E/ 13.3 13.6 9.6* 17.6 32.9

/o/ 26.5 24.8* 25.4 38.1 26.7

/O/ 24.7* 25.2 26.1 36.9 31.0

/u/ 5.0* 5.1 7.5 23.4 18.7

/y/ 11.9 12.8 11.8* 22.0 27.2

/Y/ 14.6 14.4* 15.1 29.6 40.7

Overall 18.9 18.9 15.0* 26.8 27.7

 
Note that the results presented in the current paper concern 

difficult cases. For instance, if we had tried to classify vowels 
that are acoustically more different from each other (such as 
/i/,  /a/,  and  /u/),  results  would  probably  have  been  better. 
However, the latter are not the kind of substitution errors that 
are  frequently  made  by  language  learners.  For  a  CALL 
application it is important to be able to detect the errors that 
are frequently made by language learners.

Therefore,  we first  studied  what  frequent  errors  are  (see 
Table  I)  [14],  and  we tried  to  develop  classifiers  for  these 
frequent  errors.  Here  we  present  results  for  many  tokens 
present in different components of a standard general purpose 
corpus  (CGN),  e.g.  in  'relatively  uncontrolled  material',  in 
which  different  factors  may  have  a  negative  effect  on  the 
performance of our classifiers.

First of all, there is a training-test mismatch. For training 
read  speech  was  used,  while  for  testing  we  used  broadcast 
speech:  there  is  a  mismatch  in  speech  style,  recording 



channels, etc. Furthermore, we used all tokens without using a 
selection procedure  (e.g.  for  context,  place  of  words in  the 
utterances,  prosodic  effects,  etc.).  In  the  final  CALL 
application we have more control over many of these factors: 
we know who the  speaker  is  (and  adapt  to  that  speaker  in 
various  ways),  what  the  recording  channel  is,  and  we  can 
choose the material (the stimuli and the prompts) ourselves in 
such a way that we can focus on those problematic sounds that 
can be reliably detected.  Even within the speech  of natives 
there will be a large variation in the realisation of (distinct) 
vowels,  and it  is  known that  realisations  of  distinct  vowels 
often  overlap.  By   providing  feedback  only  on  clear 
mispronunciations, we can minimise the number of times that 
a  correct  realisation  of  a  phoneme  is  classified  as  a 
mispronunciation (false rejections).

TABLE IV
EQUAL ERROR RATES FOR COMBINED FEATURE SETS.

Target MFCC+
Duration

Spectral+
Duration

MFCC+
Duration+
CMseg

MFCC+
Duration+
CMstate

/a/ 12.5 18.5 11.3 11.1
/A/ 13.0 13.8 11.6 11.7
/i/ 13.3 22.2 12.5 12.6
/I/ 13.7 22.4 14.0 13.7
/e/ 9.1 13.0 7.9 7.8
/E/ 9.7 15.7 8.4 8.4
/o/ 20.8 26.9 19.3 19.2
/O/ 23.9 30.3 19.5 19.7
/u/ 7.2 17.8 4.7 4.6
/y/ 13.0 19.9 9.7 9.7
/Y/ 14.9 22.4 9.9 9.8
Overall 13.9 19.6 12.3 12.3

For  the  /o/  vs.  /O/  distinction  classification  performance 
turns out to be lower than for all other combinations. This may 
partly  be  explained  by  the  higher  acoustic  similarity 
between  /o/ and /O/ as compared to the other vowel sets that 
are  studied  here.  Shown in Table  V are  average  frequency 
values of the formants (F1 and F2) for 50 males in columns 2 
and 3 (taken from [27] and for 16 female speakers in columns 
4 and 5 (taken from [28]). Although there are differences in 
the values, which was expected because columns 2-3 concern 
males and columns 4-5 females, it is clear that the differences 
between /o/ and /O/ are smaller compared to those within the 
other vowel sets. In order to obtain better performance for /o/ 
vs. /O/ we might need to look in more detail to the (phonetic) 
differences between these vowels, for instance the fact that /o/ 
often shows a considerable degree of diphthongisation.

Table V also contains information on the average durations 
of phonemes: the average values in column 6 are taken from 
[29]. The differences between the average durations in column 
6 of Table V reflect the performance of the classifiers using 
duration alone (see column 6 of Table III).  For instance, the 
smallest difference in duration is observed for /i/ vs. /I/, and 
classification with duration alone also shows the highest error 
rates  for  these  vowels.  On  the  other  extreme:  the  largest 

differences  in duration are observed for  /a/ vs. /A/, and the 
best  (average)  classification  results  are  also  found  for  this 
vowel pair. Our classification results are thus in line with the 
phonetic observations.

TABLE  V
AVERAGE VALUES FOR THE PHONEMES IN CLUMN 1. COLUMNS 2-5 CONTAIN AVERGE 

FORMANT (F1 & F2) VALUES (IN HZ) TAKEN FROM [27] AND [28] RESP. COLUMN 6 
CONTAINS AVERAGE VALUES FOR THE DURATION OF THE PHONEMES (IN MSEC.), TAKEN 

FROM [29].

Phon. F1 F2 F1 F2 Dur

/a/ 795 1301 948 1644 186

/A/ 679 1051 859 1321 103

/i/ - - 346 2401 105

/I/ 388 2003 442 2452 91

/e/ 407 2017 438 2443 176

/E/ 583 1725 638 2123 107

/o/ 487 911 525 1033 162

/O/ 523 866 581 1079 99

/u/ 339 810 400 893 111

/y/ 305 1730 354 2070 140

/Y/ 438 1498 482 1832 98

We are aware that there is a considerable overlap between 
feature sets. For instance, CMs, MFCCs, and Spectral are all 
spectrally based, and thus it is not surprising to observe that 
there  are  similarities  in  the  results.  Furthermore,  there  is  a 
large variation in the number of features in the sets used here: 
1 for CMseg, 3 for CMstate, 117 for MFCCs, 14 for Spectral, and 
4 for  Duration.  It  is  interesting  to  observe  that  a  classifier 
based on 1 feature ( CMseg) performs almost as well as the one 
based on 117 MFCCs. The different  feature sets have some 
pros and cons.

The advantage of the CMs compared to the MFCCs is that 
the  number  of  features  is  much  smaller.  However,  more 
important  in the final  application is probably the CPU time 
required. The fact that MFCCs and  Duration are part of the 
standard  ASR  procedure,  i.e.  they  do  not  require  a  large 
computational overhead, might thus be appealing. 

On  the  other  hand,  phonetic  features  (Spectral and 
Duration)  have the advantage  that  they can  be more  easily 
interpreted.  If  formant  values  and  durations  are  too  low or 
high, feedback based on these observations can be given to the 
learner (i.e. the position of your tongue is too high (if F1 is too 
low), or the vowel should be made shorter) and to the teacher 
(for  monitoring the learner).  Clearly,  the latter  can be very 
useful in a language learning application.

Although  in  the  current  paper  we  studied  classifiers  for 
mispronunciation  detection  of  Dutch  vowels,  the  methods 
used are generic and can easily be ported to other languages 
and other sounds. First, the results presented are relevant for 
other languages that contain sets of vocalic phonemes that are 



very similar in acoustic and articulatory terms (i.e.  English, 
German  and  Swedish)  and  as  such  pose  problems  to  L2 
learners. In addition, similar classifiers can be developed for 
different vowel combinations, but also for consonants, as we 
have  done  in  our  previous  research  [9,10].  The  relative 
importance  of  some features  will  differ  between  languages. 
For instance,  the importance of duration in the detection of 
vowels will be smaller in languages in which duration is not 
such an important factor in the vowel system, such as Italian 
and Spanish.  However,  in the latter  two languages  duration 
plays  a  more  important  role  in  recognizing  consonants 
(compared  to,  e.g.,  Dutch).  Classifiers  thus  have  to  be 
optimized  for  each  language,  but  the  procedures  used  to 
develop the classifiers can be very similar.

Furthermore, in the current research the classifiers are used 
to detect pronunciation errors made by language learners. In 
doing  this  we  focused  on  substitutions  often  made  by 
language  learners,  because  this  is  most  important  for  the 
application  in  our  language  learning  project.  Thus  we
trained and tested the classifiers for certain combinations of 
vowels,  e.g.  /a/  vs.  /A/.  However,  it  is  also  possible  to 
optimize the classifiers for other purposes: other combinations 
of sounds, or – very general - to detect whether a given sound 
is indeed the intended sound (e.g.  /a/ or not). The cases we 
studied here are very difficult ones, since the vowels we try to 
discern  are  acoustically  very  similar.  For  other  sound 
combinations the task will generally will be easier and thus 
performance is likely to be higher.
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