Speech technology for language tutoring

Helmer Strik, Ambra Neri, Catia Cucchiarini
Department of Language and Speech, Radboud University Nijmegen, The Netherlands
h.strik@let.ru.nl, a.neri@let.ru.nl, c.cucchiarini@let.ru.nl

1. Introduction

• Increased mobility
• Emphasis on plurilingualism
 ➔ increasing demand for language training

Optimal training: 1 learner – 1 teacher, esp. for feedback on oral proficiency. But many teachers needed – time-consuming and costly
In classroom: individual, corrective feedback is not possible

Computer Assisted Language Learning (CALL) systems with Automatic Speech Recognition (ASR) offer new perspectives for language tutoring.

2. CALL applications of ASR

Some researchers are skeptical. Why?

1. Language tutoring & ASR

Standard (ASR) dictation packages have often been used for language tutoring.

Results were not convincing:

"voice recognition technology is still at an early stage of development in terms of accuracy and single-speaker dependency"

However, standard dictation packages are mainly intended
• for native speakers (not non-natives!)
• for recognizing words (not language tutoring!)
 i.e. not suitable for language tutoring/CALL

CALL requires dedicated ASR

2. Software design (feedback)

Design: Technology push or ...?

Waveforms & spectrograms
They look flashy and impressive, but are not easily interpretable for students.
Furthermore: should one imitate the model?

Detailed feedback on various aspects could be useful, but not if often erroneous

• False accepts: errors that are not detected by the system
• False rejects: correct realizations that are flagged as errors by the system
 False rejects can be confusing and discouraging to language learners
 ➔ try to minimize the number of false rejects

Shortcomings in the design of the ASR-based CALL programs contribute to creating the impression that speech technology is to blame

3. Technological challenges

• Try to improve the technology (gradual, slow)
• Try to make optimal use of current technology, taking into account what is possible and what isn’t possible with current technology

1. ASR/Speech technology

Non-native speech is problematic for ASR
Possible solutions – try to make use of non-native speech
• lexis with non-native pronunciation networks
• language models based on words and word orders as spoken by non-natives
• acoustic models that represent the way non-natives pronounce sounds

For the acoustic models there are several possibilities:
• simply train them on L2 speech
• use acoustic models of L1 and L2 in parallel
• use a combination of L1 and L2 models
• include intermediate phones

Improve the ASR – or make the task less difficult:
• constrained lexicon and language model ➔ better performance
• limited number of possible answers ➔ utterance verification techniques

Challenge: develop engaging items, for which the possible answers can be predicted

2. Assessment

Discrepancies between the incoming speech and the native speech model
• recognition - be tolerant of these discrepancies
• assessment – look exactly for those discrepancies

Assessment:
• pronunciation grading - global score, at level of utterance(s)
 using more global measures, e.g. temporal measures
• error detection - score at a local (e.g. phoneme) level
 possible approaches:
 1. focus on frequent errors, ‘hard-wire’ them
 2. ASR-based metrics, e.g. confidence measures
 3. acoustic phonetic classifiers, better performance but ...

3. Projects

Dutch-CAPT: Computer Assisted Pronunciation Training for learning Dutch pronunciation (see Figures above)
• Design: based on a thorough study of existing CALL systems and analyses of 3 databases of 116 learners with different mother tongues.
• Focus: 11 problematic Dutch phonemes
• Results on pedagogical effectiveness: language learners who used this system only four times for about 30 to 60 minutes improved more than a control group that did not use the system

DISCO: ‘Development and Integration of Speech technology into COrurseware for language learning’
3 year project, started on 1-02-2008
Develop and test a prototype system for training various aspects of oral proficiency: pronunciation, morphology & syntax.

4 Conclusions

Speech technology holds great potential for language tutoring.

• Developing good applications requires mixed expertise:
 knowledge of speech technology, education/pedagogy, language acquisition/learning, software design and development.
• Developing good products therefore requires that the right people work together: speech technologists, teaching professionals, software designers and industrial partners (e.g. publishers);
• Standard dictation packages are not suitable for CALL, CALL requires dedicated ASR

ASR-based CALL systems can offer
• extra learning time and material
• specific feedback on individual errors
• the possibility to simulate realistic settings

ASR-based CALL could be employed to
• interaction in a private and stress-free environment
• develop new methods for teaching language aspects
 e.g. literacy, reading, oral proficiency, speaking fluency, and vocabulary