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Abstract

We are developing a Computer Assisted Language Learning
(CALL) system that gives feedback to grammar and pronunci-
ation that makes use of Automatic Speech Recognition (ASR).
However, good quality unconstrained non-native ASR is not yet
feasible. Therefore, we use an approach in which we try to elicit
constrained responses. The task in the current experiments is to
select utterances from a list of responses. The results of our ex-
periments show that significant improvements can be obtained
by optimizing the language model and acoustic models. In this
way we could reduce the utterance error rate from 29-26% to
10-8%.

Index Terms: non-native speech recognition, computer-
assisted language learning

1. Introduction

The increasing demand for innovative applications that support
language learning has led to a growing interest in Computer
Assisted Language Learning (CALL) systems that make use of
Automatic Speech Recognition (ASR) technology. Such sys-
tems can address oral proficiency, one of the most problem-
atic skills in terms of time investments and costs, and are seri-
ously being considered as a viable alternative to teacher-fronted
lessons. In the Netherlands speaking proficiency plays an im-
portant role within the framework of civic integration examina-
tions. In this context automatic systems for improving speaking
performance are particularly welcome. Such systems should
preferably address important aspects of oral proficiency like
pronunciation and grammar.

However, developing ASR-based CALL systems that can
provide training and feedback for second language speaking is
not trivial, as ASR performance on non-native speech is not yet
as good as on native speech [1] [2] [3] [4]. The main prob-
lems with non-native speech concern deviations in pronuncia-
tion, morphology, and syntax and a relatively high rate of dis-
fluencies, such as filled pauses, repetitions, restarts and repairs.
To circumvent the ASR problems caused by these phenomena,
some approaches have been proposed to restrict the search space
and make the task easier. A major distinction can be drawn
between a) strategies that are essentially aimed at constraining
the output of the learner so that the speech becomes more pre-
dictable and b) techniques that are aimed at improving the de-
coding of non-native speech.

Within the first category, a well-known strategy consists in
eliciting output from learners by letting them choose from a fi-
nite set of answers that are presented on the screen. This tech-
nique was used in the ISLE system [5] and Tell me More [6]
and Talk to Me [7] series developed by Auralog. In the Auralog
products the learner can engage in dialogues with the computer
by answering oral questions that are simultaneously displayed
on the screen and can reply by choosing one response from

a set of three that are phonetically sufficiently different from
each other so that the spoken response can easily be recognized
by the ASR system. Although this strategy allows for rela-
tively realistic dialogues and is still applied in language learning
applications, different techniques were also explored to allow
more freedom in the responses. This would mean that instead
of choosing from a limited set of utterances that can be read
aloud, the learner has some freedom in formulating his/her an-
swer. This was the case in the Subarashi program [8] and in the
Lets Go system [2].

More freedom in user responses is particularly necessary
in ASR-based CALL systems that are intended for practicing
grammar in speaking proficiency. While for practicing pronun-
ciation it may suffice to read out loud sentences, to practice
grammar learners need to have some freedom in formulating
answers so that they can show whether they are able to produce
correct forms. So, the challenge in developing an ASR-based
system for practicing oral proficiency consists in designing ex-
ercises that allow some freedom to the learners in producing
answers, but that are predictable enough to be handled by ASR.

This is precisely the challenge we face in our DISCO
project, which is aimed at developing a prototype of an ASR-
based CALL application for practicing speaking performance
in Dutch as a second language (DL2). The application aims at
optimizing learning through interaction in realistic communica-
tion situations and at providing intelligent feedback on impor-
tant aspects of DL2 speaking, viz. pronunciation, morphology,
and syntax. Within this project we are designing exercises that
stimulate students to produce utterances containing the required
morphological and syntactic forms by using dialogues and dis-
playing words on the screen, without declensions or conjuga-
tions, in random order, possibly in combination with pictograms
and figures representing scenes.

In these exercises learners are prompted to produce utter-
ances which are subsequently analyzed to detect the errors and
provide the appropriate feedback. In the DISCO application
we intend to adopt a two-step procedure in which first is de-
termined what was said (content), and subsequently how it was
said (form). In the first phase the system should tolerate de-
viations in the way utterances are spoken, while in the second
phase, strictness is required (see also [5] and [9]). The first
phase is necessary to establish whether the learner produced an
appropriate answer. Only after the incoming utterance has been
identified as being an attempt at producing the required answer,
does the system proceed to carry out error detection. If the ut-
terance cannot be recognized the system will prompt the user to
try again.

In the first phase of the two-step procedure two stages can
be distinguished, a) recognition and b) verification. In the
present paper we will confine ourselves to the research we car-
ried out to optimize the process of recognizing the intended
utterance. In the remainder of this paper we first present the



speech material we used in our experiments. Because we do not
have DISCO speech data yet, we resorted to other non-native
speech material which seemed particularly suitable for our re-
search purpose, as will be described in the Method section (2).
The results of our experiments are presented in section 3. In
section 4 we discuss our findings and draw some conclusions.

2. Method
2.1. Material

The speech material for the present experiments was taken from
the JASMIN speech corpus [10], which contains speech of chil-
dren, non-natives and elderly people. Since the non-native com-
ponent of the JASMIN corpus was collected for the aim of fa-
cilitating the development of ASR-based language learning ap-
plications, it seemed particularly suited for our purpose. Speech
from speakers with different mother tongues was collected, be-
cause this realistically reflects the situation in Dutch L2 classes.
In addition, these speakers have relatively low proficiency lev-
els, namely A1, A2 and B1 of the Common European Frame-
work (CEF), because it is for these levels that ASR-based CALL
applications appear to be most needed.

The JASMIN corpus contains speech collected in two dif-
ferent modalities: read speech and human-machine dialogues.
The latter were used for our experiments because they more
closely resemble the situation we will encounter in the DISCO
application. The JASMIN dialogues were collected through a
Wizard-of-Oz-based platform and were designed such that the
wizard was in control of the dialogue and could intervene when
necessary. In addition, recognition errors were simulated and
difficult questions were asked to elicit some typical phenomena
of human-machine interaction that are known to be problematic
in the development of spoken dialogue systems, such as hyper-
articulation, restarts, filled pauses, self talk and repetitions.

The material we used for the present experiments consists
of speech from 45 speakers, 40% male and 60% female, with
25 different L1 backgrounds. Ages range from 19 to 55, with
a mean of 33. The speakers each give answers to 39 questions
about a journey. We first deleted the utterances that contain
crosstalk, background noise and whispering from the corpus.
After deletion of these utterances the material consists of 1325
utterances. The mean signal-to-noise-ratio (SNR) of the mate-
rial is 24.9 with a standard deviation of 5.1.

2.2. Speech Recognizer

The speech recognizer we used in this research is SPRAAK
[11], an open source HMM ASR package. The input speech,
sampled at 16kHz, is divided into overlapping 32ms Hamming
windows with a 10ms shift and pre-emphasis factor of 0.95. 12
Mel-frequency cepstral coefficients (MFCC) plus Cy, and their
first and second order derivatives were calculated and cepstral
mean subtraction (CMS) was applied. The constrained lan-
guage models and pronunciation lexicons are implemented as
finite state machines (FSM).

To simulate the ASR task in the DISCO application, we
generated lists of the answers given by each speaker to each of
the 39 questions. These lists mimic the predicted responses in
our CALL application task because they contain a) responses to
relatively closed questions and b) morphologically and syntac-
tically correct and incorrect responses.

2.3. Language Modelling

Our approach was to use a constrained language model (LM)
to restrict the search space. In total 39 LMs were generated
based on the responses to each of the 39 questions. These re-
sponses were manually transcribed at the orthographic level.
Filled pauses, restarts and repetitions were also annotated.

Filled pauses are common in everyday spontaneous speech
and generally do not hamper communication. It seems there-
fore that students using a CALL application should be allowed
to make filled pauses. In our material 46% of the utterances con-
tain one or more filled pauses and almost 13% of all transcribed
units are filled pauses.

While restarts, repairs and repetitions can also occur in nor-
mal speech, albeit less frequently, we think that in a CALL ap-
plication for training oral proficiency students should be stimu-
lated to produce fluent speech. On these grounds restarts, repe-
titions and repairs can be penalized. In our material 11% of the
answers contain one or more disfluencies. In this research we
do not focus on restarts and repetitions. We included their or-
thographic transcriptions in the LM and their manual phonetic
transcriptions in the lexicon.

The LMs are implemented as FSMs with parallel paths of
orthographic transcriptions of every unique answer to the ques-
tion. A priori each path is equally likely. For example, part of a
response list is:

/ik ga met uh... de vliegtuig/ (/I am going er... by plane/*)
/ik uh... ga met de trein/ (/I er... am going by train/)
/met de uh... vliegtuig/ (/by er... plane/*)

/met het vliegtuig/ (/by plane/)

The baseline LM that is generated from this list, in which
filled pauses are left out, is depicted in fig. 1.

Figure 1: Baseline language model

To be able to decode possible filled pauses between words,
we generated another LM with self-loops added in every node.
Filled pauses are represented in the pronunciation lexicon as
/@/ or /@m/, phonetic representations of the two most com-
mon filled pauses in Dutch. The filled pause loop penalty was
empirically optimized.

To examine whether filled pause loops are an adequate way
of modelling filled pauses, we also experimented with an or-
acle LM containing the reference orthographic transcriptions
(which include the manually annotated filled pauses) without
filled pause loops.

2.4. Acoustic Modelling

We trained three-state tied Gaussian Mixture Models (GMM).
Baseline triphone models were trained on 42 hours of native
read speech from the CGN corpus [12]. In total 11,660 tri-
phones were created, using 32,738 Gaussians.



In several studies on non-native speech processing it has
been observed that by adapting or retraining native acoustic
models (AM) with non-native speech, decoding performance
can be increased [3] [13]. To investigate whether this is also
the case in a constrained task as described in this paper, we re-
trained the baseline acoustic models with non-native speech.

New AMs were obtained by doing a one-pass Viterbi train-
ing based on the native AMs with 6 hours of non-native read
speech from the JASMIN corpus. These utterances were spo-
ken by the same speakers as those in our test material.

Triphone AMs are the de facto choice for most researchers
in speech technology. However, the expected performance gain
from modelling context dependency by using triphones over
monophones might be minimal in a constrained task. There-
fore, we also experimented with non-native monophone AMs
trained on the same non-native read speech.

2.5. Lexical Modelling

The baseline pronunciation lexicon contains canonical phonetic
representations extracted from the CGN lexicon. It is well-
known that non-native pronunciation generally deviates from
native pronunciation, both at the phonetic and the phonemic
level. To model this pronunciation variation at the phonemic
level, pronunciation variants are usually added to the lexicon.
Several researchers report a slight performance gain by includ-
ing non-native pronunciation variants [13].

To derive pronunciation variants, we extracted context-
dependent rewrite rules from an alignment of canonical and re-
alized phonemic representations of non-native speech from the
JASMIN corpus (the test material was excluded). Prior proba-
bilities of these rules were estimated by taking the relative fre-
quency of rule applications in their context.

We generated pronunciation variants by successively apply-
ing the derived rewrite rules to the canonical representations in
the baseline lexicon. Variant probabilities were calculated by
multiplying the applied rule probabilities. Canonical represen-
tations have a standard probability of 1. Afterwards, probabili-
ties of pronunciation variants per word were normalized.

By introducing a cutoff probability, pronunciation lexicons
were created that contain only variants above this cutoff, on av-
erage 2, 3, 4 and 5 variants per word.

2.6. Evaluation

We evaluated the speech decoding setups by using the utterance
error rate (UER), which is the percentage of utterances where
the 1-Best decoding result deviates from the transcription. For
each UER the 95% confidence interval was calculated to eval-
uate whether UERs between conditions where significantly dif-
ferent. Filled pauses are not taken into account during evalua-
tio. That is, decoding results and reference transcriptions were
compared after deletion of filled pauses.

As explained in the introduction, we don’t expect our
method to carry out a detailed phonetic analysis in the first
phase. Since it is not necessary to discriminate between pho-
netically close responses at this stage, a decoding result can
be classified as correct when its phonetic distance to the corre-
sponding transcription is below a threshold. The phonetic dis-
tance was calculated through an alignment program that uses
an adaptation of the standard dynamic programming algorithm
to align transcriptions on the basis of distance measures be-
tween phonemes represented as combinations of phonetic fea-
tures [14].

AM LM 0 5 10 15
native (tri) without loops | 289 284 26.1 24.6
native (tri) with loops 149 146 126 110
native (tri) with positions | 14.7 144 13.1 12.0
non-native(tri) without loops | 224 220 199 184
non-native(tri) with loops 10.0 9.7 7.9 6.9
non-native(tri) with positions | 9.4 9.1 7.8 7.1
non-native(mono)  with loops 119 115 93 8.1

Table 1: This table shows the UERs for the different language
models: without FP loops, with FP loops and with FP positions,
and different acoustic models: trained on native speech (tri-
phone) and retrained on non-native speech (triphone and mono-
phone). All setups used the baseline canonical lexicon. The
columns 0, 5, 10, 15 indicate at what phonetic distance to the
reference transcription the decoding result is classified as cor-
rect.

Lex Priors | 0 5 10 15
canonical - 10.0 9.7 79 6.9
2 var no 10.0 9.9 82 6.7
2 var yes 10.0 9.7 83 7.0
3 var no 1.2 109 85 7.1
3 var yes 106 101 87 7.2
4 var no 115 113 89 75
4 var yes 104 109 97 172
5 var no 11.5 113 89 175
5 var yes 104 100 87 72

Table 2: UERs for different lexicons: canonical, 2-5 variants
with and without priors. These rates are obtained by using non-
native triphone acoustic models and language models with filled
pause loops.

3. Results

In table 1 the UER for the different language models and acous-
tic models can be observed. In all cases, the language model
with filled pause loops performed significantly better than the
language model without loops. Furthermore, the oracle lan-
guage model with manually annotated filled pauses did not per-
form significantly better than the language model with loops.

Decoding setups with acoustic models trained on non-
native speech performed significantly better than those with
acoustic models trained on native speech.

The performance difference between monophone and tri-
phone acoustic models was not significant. As expected, error
rates are lower when evaluating using clusters of phonetically
similar responses. To better appreciate the results in table 1 it is
important to get an idea of the meaning of these distances. For
instance, a phonetic distances between 0 and 5 generally indi-
cates that the utterances differ by 1 or 2 segments; a distance be-
tween 5 and 10 usually stands for a discrepancy of a short word,
and distances larger than 10 are observed when the differences
concern long words. Since there are few responses with a pho-
netic distance smaller than 5, differences between conditions 0
and 5 are marginal. Performance differences between 0 (equal
to transcription) and 10 (one of the answers with a phonetic dis-
tance of 10 or smaller to the 1-Best equals the transcription) and
between 5 and 15 were significant.

Performance decreased using lexicons with pronunciation
variants generated using data-driven methods. The more vari-
ants are added, the worse the performance. There is no signifi-




cant difference between using equal priors or estimated priors.

4. Discussion and Conclusions

The results presented in the previous section indicate that large
and significant improvements could be obtained by optimizing
the language model and the acoustic models. On the other hand,
pronunciation modelling at the level of the lexicon did not pro-
duce significant improvements. On the contrary, adding vari-
ants to the lexicon caused a decrease in performance. Adding
estimated prior probabilities to the variants improved the results
somewhat, but still the error rates remain higher than those for
the canonical lexicon. These results might be surprising be-
cause, in general, adding a limited number of pronunciation
variants to the lexicon helps improve performance to a certain
extent. However, in the case of non-native speech this strat-
egy is not always successful [15]. Possible explanations might
be sought in the nature of the variation that characterizes non-
native speech. Non-native speakers are likely to replace target
language phonemes by phonemes from their mother tongue [4].
When the non-native speech is heterogeneous in the sense that it
is produced by speakers with different mother tongues, as in our
case, it is extremely difficult to capture the rather diffuse pattern
of variation by including variants in the lexicon (see also [16]).

The findings that better results are obtained with non-native
acoustic models and with a language model with filled pause
loops are not surprising, after all the utterances are spoken by
non-natives, recorded in the same environment and contain a
lot of filled pauses. In fact, these results do not differ signifi-
cantly from the results obtained with an oracle language model,
in which the exact position of the filled pauses is copied from
the manual transcriptions. This is an important result because
non-natives are known to produce numerous filled pauses in un-
prepared, extemporaneous speech [17]. It is therefore to be ex-
pected that in the eventual DISCO application we will have to
deal with utterances that contain filled pauses, and it is good to
see that despite the great number of filled pauses in the material,
sequences of words can often still be recognized correctly.

Another reassuring result is that concerning the non-native
acoustic models. These were obtained by retraining native mod-
els on a relatively small amount (around 8 minutes per speaker)
of non-native read speech material. It appears that this was suf-
ficient to obtain significantly better results. In the final applica-
tion we might then use a relatively short enrolment phase and do
acoustic model retraining or adaptation, to obtain better recog-
nition results.

As explained above, the DISCO system will first determine
the content of the utterance before proceeding to error detec-
tion. In this setup 100% accuracy is not strictly required in the
first phase. If it is not clear whether a segment or a (short) word
was pronounced or not, this can be ascertained in the second
phase through a more detailed analysis [9]. At the moment we
think that in the second phase we can handle utterances with a
phonetic distance smaller than 5, which usually corresponds to
adifference of 1 or 2 segments, or possibly even utterances with
a phonetic distance smaller than 10, which often boils down to
a deviation by a short word. For the latter category the best
result obtained is an error rate of around 8%. This is encourag-
ing, especially if we keep in mind that in a language learning
application we can be conservative, in the sense that if we are
not sufficiently confident about the recognition result we can
always ask the language learner to try again.

In the near future, we will try to improve our results, if only
by using more data. We are already collecting more non-native

speech material, and once we have a first version of the applica-
tion we will collect material which is obviously more suitable
for improving speech recognition for our system. Error rates
will depend on the length of the list (of possible responses), but
also on the degree of confusability between the responses in the
list, the phonetic distances. We will try to gain more insight
into how these factors can affect performance, and will use this
knowledge in designing our application.
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